| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fincygsubgodd.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | fincygsubgodd.2 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | fincygsubgodd.3 | ⊢ 𝐷  =  ( ( ♯ ‘ 𝐵 )  /  𝐶 ) | 
						
							| 4 |  | fincygsubgodd.4 | ⊢ 𝐹  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) ) | 
						
							| 5 |  | fincygsubgodd.5 | ⊢ 𝐻  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  ( 𝐶  ·  𝐴 ) ) ) | 
						
							| 6 |  | fincygsubgodd.6 | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 7 |  | fincygsubgodd.7 | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
						
							| 8 |  | fincygsubgodd.8 | ⊢ ( 𝜑  →  ran  𝐹  =  𝐵 ) | 
						
							| 9 |  | fincygsubgodd.9 | ⊢ ( 𝜑  →  𝐶  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 10 |  | fincygsubgodd.10 | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 11 |  | fincygsubgodd.11 | ⊢ ( 𝜑  →  𝐶  ∈  ℕ ) | 
						
							| 12 |  | eqid | ⊢ ( od ‘ 𝐺 )  =  ( od ‘ 𝐺 ) | 
						
							| 13 | 4 | rneqi | ⊢ ran  𝐹  =  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) ) | 
						
							| 14 | 8 13 | eqtr3di | ⊢ ( 𝜑  →  𝐵  =  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) ) ) | 
						
							| 15 | 1 2 12 6 7 14 | cycsubggenodd | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 16 | 10 | iftrued | ⊢ ( 𝜑  →  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 17 | 15 16 | eqtrd | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( 𝜑  →  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  /  𝐶 )  =  ( ( ♯ ‘ 𝐵 )  /  𝐶 ) ) | 
						
							| 19 | 11 | nnzd | ⊢ ( 𝜑  →  𝐶  ∈  ℤ ) | 
						
							| 20 | 1 12 2 | odmulg | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝐵  ∧  𝐶  ∈  ℤ )  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  =  ( ( 𝐶  gcd  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )  ·  ( ( od ‘ 𝐺 ) ‘ ( 𝐶  ·  𝐴 ) ) ) ) | 
						
							| 21 | 6 7 19 20 | syl3anc | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  =  ( ( 𝐶  gcd  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )  ·  ( ( od ‘ 𝐺 ) ‘ ( 𝐶  ·  𝐴 ) ) ) ) | 
						
							| 22 | 1 12 | odcl | ⊢ ( 𝐴  ∈  𝐵  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 23 |  | nn0z | ⊢ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∈  ℕ0  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 24 | 7 22 23 | 3syl | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 25 | 9 17 | breqtrrd | ⊢ ( 𝜑  →  𝐶  ∥  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) | 
						
							| 26 | 11 24 25 | dvdsgcdidd | ⊢ ( 𝜑  →  ( 𝐶  gcd  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )  =  𝐶 ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐶  gcd  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )  ·  ( ( od ‘ 𝐺 ) ‘ ( 𝐶  ·  𝐴 ) ) )  =  ( 𝐶  ·  ( ( od ‘ 𝐺 ) ‘ ( 𝐶  ·  𝐴 ) ) ) ) | 
						
							| 28 | 21 27 | eqtrd | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  =  ( 𝐶  ·  ( ( od ‘ 𝐺 ) ‘ ( 𝐶  ·  𝐴 ) ) ) ) | 
						
							| 29 | 1 12 7 | odcld | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 30 | 29 | nn0cnd | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 31 | 1 2 6 19 7 | mulgcld | ⊢ ( 𝜑  →  ( 𝐶  ·  𝐴 )  ∈  𝐵 ) | 
						
							| 32 | 1 12 31 | odcld | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ ( 𝐶  ·  𝐴 ) )  ∈  ℕ0 ) | 
						
							| 33 | 32 | nn0cnd | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ ( 𝐶  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 34 | 19 | zcnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 35 | 11 | nnne0d | ⊢ ( 𝜑  →  𝐶  ≠  0 ) | 
						
							| 36 | 30 33 34 35 | divmul2d | ⊢ ( 𝜑  →  ( ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  /  𝐶 )  =  ( ( od ‘ 𝐺 ) ‘ ( 𝐶  ·  𝐴 ) )  ↔  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  =  ( 𝐶  ·  ( ( od ‘ 𝐺 ) ‘ ( 𝐶  ·  𝐴 ) ) ) ) ) | 
						
							| 37 | 28 36 | mpbird | ⊢ ( 𝜑  →  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  /  𝐶 )  =  ( ( od ‘ 𝐺 ) ‘ ( 𝐶  ·  𝐴 ) ) ) | 
						
							| 38 | 18 37 | eqtr3d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐵 )  /  𝐶 )  =  ( ( od ‘ 𝐺 ) ‘ ( 𝐶  ·  𝐴 ) ) ) | 
						
							| 39 | 3 38 | eqtrid | ⊢ ( 𝜑  →  𝐷  =  ( ( od ‘ 𝐺 ) ‘ ( 𝐶  ·  𝐴 ) ) ) | 
						
							| 40 | 5 | rneqi | ⊢ ran  𝐻  =  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  ( 𝐶  ·  𝐴 ) ) ) | 
						
							| 41 | 40 | a1i | ⊢ ( 𝜑  →  ran  𝐻  =  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  ( 𝐶  ·  𝐴 ) ) ) ) | 
						
							| 42 | 1 2 12 6 31 41 | cycsubggenodd | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ ( 𝐶  ·  𝐴 ) )  =  if ( ran  𝐻  ∈  Fin ,  ( ♯ ‘ ran  𝐻 ) ,  0 ) ) | 
						
							| 43 | 39 42 | eqtrd | ⊢ ( 𝜑  →  𝐷  =  if ( ran  𝐻  ∈  Fin ,  ( ♯ ‘ ran  𝐻 ) ,  0 ) ) | 
						
							| 44 |  | iffalse | ⊢ ( ¬  ran  𝐻  ∈  Fin  →  if ( ran  𝐻  ∈  Fin ,  ( ♯ ‘ ran  𝐻 ) ,  0 )  =  0 ) | 
						
							| 45 | 43 44 | sylan9eq | ⊢ ( ( 𝜑  ∧  ¬  ran  𝐻  ∈  Fin )  →  𝐷  =  0 ) | 
						
							| 46 | 3 | a1i | ⊢ ( 𝜑  →  𝐷  =  ( ( ♯ ‘ 𝐵 )  /  𝐶 ) ) | 
						
							| 47 |  | hashcl | ⊢ ( 𝐵  ∈  Fin  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 48 |  | nn0cn | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ℕ0  →  ( ♯ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 49 | 10 47 48 | 3syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 50 | 7 10 | hashelne0d | ⊢ ( 𝜑  →  ¬  ( ♯ ‘ 𝐵 )  =  0 ) | 
						
							| 51 | 50 | neqned | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ≠  0 ) | 
						
							| 52 | 49 34 51 35 | divne0d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐵 )  /  𝐶 )  ≠  0 ) | 
						
							| 53 | 46 52 | eqnetrd | ⊢ ( 𝜑  →  𝐷  ≠  0 ) | 
						
							| 54 | 53 | neneqd | ⊢ ( 𝜑  →  ¬  𝐷  =  0 ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ran  𝐻  ∈  Fin )  →  ¬  𝐷  =  0 ) | 
						
							| 56 | 45 55 | condan | ⊢ ( 𝜑  →  ran  𝐻  ∈  Fin ) | 
						
							| 57 | 56 | iftrued | ⊢ ( 𝜑  →  if ( ran  𝐻  ∈  Fin ,  ( ♯ ‘ ran  𝐻 ) ,  0 )  =  ( ♯ ‘ ran  𝐻 ) ) | 
						
							| 58 | 39 42 57 | 3eqtrrd | ⊢ ( 𝜑  →  ( ♯ ‘ ran  𝐻 )  =  𝐷 ) |