Metamath Proof Explorer


Theorem fincygsubgodd

Description: Calculate the order of a subgroup of a finite cyclic group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses fincygsubgodd.1 B = Base G
fincygsubgodd.2 · ˙ = G
fincygsubgodd.3 D = B C
fincygsubgodd.4 F = n n · ˙ A
fincygsubgodd.5 H = n n · ˙ C · ˙ A
fincygsubgodd.6 φ G Grp
fincygsubgodd.7 φ A B
fincygsubgodd.8 φ ran F = B
fincygsubgodd.9 φ C B
fincygsubgodd.10 φ B Fin
fincygsubgodd.11 φ C
Assertion fincygsubgodd φ ran H = D

Proof

Step Hyp Ref Expression
1 fincygsubgodd.1 B = Base G
2 fincygsubgodd.2 · ˙ = G
3 fincygsubgodd.3 D = B C
4 fincygsubgodd.4 F = n n · ˙ A
5 fincygsubgodd.5 H = n n · ˙ C · ˙ A
6 fincygsubgodd.6 φ G Grp
7 fincygsubgodd.7 φ A B
8 fincygsubgodd.8 φ ran F = B
9 fincygsubgodd.9 φ C B
10 fincygsubgodd.10 φ B Fin
11 fincygsubgodd.11 φ C
12 eqid od G = od G
13 4 rneqi ran F = ran n n · ˙ A
14 8 13 eqtr3di φ B = ran n n · ˙ A
15 1 2 12 6 7 14 cycsubggenodd φ od G A = if B Fin B 0
16 10 iftrued φ if B Fin B 0 = B
17 15 16 eqtrd φ od G A = B
18 17 oveq1d φ od G A C = B C
19 11 nnzd φ C
20 1 12 2 odmulg G Grp A B C od G A = C gcd od G A od G C · ˙ A
21 6 7 19 20 syl3anc φ od G A = C gcd od G A od G C · ˙ A
22 1 12 odcl A B od G A 0
23 nn0z od G A 0 od G A
24 7 22 23 3syl φ od G A
25 9 17 breqtrrd φ C od G A
26 11 24 25 dvdsgcdidd φ C gcd od G A = C
27 26 oveq1d φ C gcd od G A od G C · ˙ A = C od G C · ˙ A
28 21 27 eqtrd φ od G A = C od G C · ˙ A
29 1 12 7 odcld φ od G A 0
30 29 nn0cnd φ od G A
31 1 2 6 19 7 mulgcld φ C · ˙ A B
32 1 12 31 odcld φ od G C · ˙ A 0
33 32 nn0cnd φ od G C · ˙ A
34 19 zcnd φ C
35 11 nnne0d φ C 0
36 30 33 34 35 divmul2d φ od G A C = od G C · ˙ A od G A = C od G C · ˙ A
37 28 36 mpbird φ od G A C = od G C · ˙ A
38 18 37 eqtr3d φ B C = od G C · ˙ A
39 3 38 eqtrid φ D = od G C · ˙ A
40 5 rneqi ran H = ran n n · ˙ C · ˙ A
41 40 a1i φ ran H = ran n n · ˙ C · ˙ A
42 1 2 12 6 31 41 cycsubggenodd φ od G C · ˙ A = if ran H Fin ran H 0
43 39 42 eqtrd φ D = if ran H Fin ran H 0
44 iffalse ¬ ran H Fin if ran H Fin ran H 0 = 0
45 43 44 sylan9eq φ ¬ ran H Fin D = 0
46 3 a1i φ D = B C
47 hashcl B Fin B 0
48 nn0cn B 0 B
49 10 47 48 3syl φ B
50 7 10 hashelne0d φ ¬ B = 0
51 50 neqned φ B 0
52 49 34 51 35 divne0d φ B C 0
53 46 52 eqnetrd φ D 0
54 53 neneqd φ ¬ D = 0
55 54 adantr φ ¬ ran H Fin ¬ D = 0
56 45 55 condan φ ran H Fin
57 56 iftrued φ if ran H Fin ran H 0 = ran H
58 39 42 57 3eqtrrd φ ran H = D