| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fincygsubgodd.1 |
|
| 2 |
|
fincygsubgodd.2 |
|
| 3 |
|
fincygsubgodd.3 |
|
| 4 |
|
fincygsubgodd.4 |
|
| 5 |
|
fincygsubgodd.5 |
|
| 6 |
|
fincygsubgodd.6 |
|
| 7 |
|
fincygsubgodd.7 |
|
| 8 |
|
fincygsubgodd.8 |
|
| 9 |
|
fincygsubgodd.9 |
|
| 10 |
|
fincygsubgodd.10 |
|
| 11 |
|
fincygsubgodd.11 |
|
| 12 |
|
eqid |
|
| 13 |
4
|
rneqi |
|
| 14 |
8 13
|
eqtr3di |
|
| 15 |
1 2 12 6 7 14
|
cycsubggenodd |
|
| 16 |
10
|
iftrued |
|
| 17 |
15 16
|
eqtrd |
|
| 18 |
17
|
oveq1d |
|
| 19 |
11
|
nnzd |
|
| 20 |
1 12 2
|
odmulg |
|
| 21 |
6 7 19 20
|
syl3anc |
|
| 22 |
1 12
|
odcl |
|
| 23 |
|
nn0z |
|
| 24 |
7 22 23
|
3syl |
|
| 25 |
9 17
|
breqtrrd |
|
| 26 |
11 24 25
|
dvdsgcdidd |
|
| 27 |
26
|
oveq1d |
|
| 28 |
21 27
|
eqtrd |
|
| 29 |
1 12 7
|
odcld |
|
| 30 |
29
|
nn0cnd |
|
| 31 |
1 2 6 19 7
|
mulgcld |
|
| 32 |
1 12 31
|
odcld |
|
| 33 |
32
|
nn0cnd |
|
| 34 |
19
|
zcnd |
|
| 35 |
11
|
nnne0d |
|
| 36 |
30 33 34 35
|
divmul2d |
|
| 37 |
28 36
|
mpbird |
|
| 38 |
18 37
|
eqtr3d |
|
| 39 |
3 38
|
eqtrid |
|
| 40 |
5
|
rneqi |
|
| 41 |
40
|
a1i |
|
| 42 |
1 2 12 6 31 41
|
cycsubggenodd |
|
| 43 |
39 42
|
eqtrd |
|
| 44 |
|
iffalse |
|
| 45 |
43 44
|
sylan9eq |
|
| 46 |
3
|
a1i |
|
| 47 |
|
hashcl |
|
| 48 |
|
nn0cn |
|
| 49 |
10 47 48
|
3syl |
|
| 50 |
7 10
|
hashelne0d |
|
| 51 |
50
|
neqned |
|
| 52 |
49 34 51 35
|
divne0d |
|
| 53 |
46 52
|
eqnetrd |
|
| 54 |
53
|
neneqd |
|
| 55 |
54
|
adantr |
|
| 56 |
45 55
|
condan |
|
| 57 |
56
|
iftrued |
|
| 58 |
39 42 57
|
3eqtrrd |
|