Step |
Hyp |
Ref |
Expression |
1 |
|
fincygsubgodd.1 |
|- B = ( Base ` G ) |
2 |
|
fincygsubgodd.2 |
|- .x. = ( .g ` G ) |
3 |
|
fincygsubgodd.3 |
|- D = ( ( # ` B ) / C ) |
4 |
|
fincygsubgodd.4 |
|- F = ( n e. ZZ |-> ( n .x. A ) ) |
5 |
|
fincygsubgodd.5 |
|- H = ( n e. ZZ |-> ( n .x. ( C .x. A ) ) ) |
6 |
|
fincygsubgodd.6 |
|- ( ph -> G e. Grp ) |
7 |
|
fincygsubgodd.7 |
|- ( ph -> A e. B ) |
8 |
|
fincygsubgodd.8 |
|- ( ph -> ran F = B ) |
9 |
|
fincygsubgodd.9 |
|- ( ph -> C || ( # ` B ) ) |
10 |
|
fincygsubgodd.10 |
|- ( ph -> B e. Fin ) |
11 |
|
fincygsubgodd.11 |
|- ( ph -> C e. NN ) |
12 |
|
eqid |
|- ( od ` G ) = ( od ` G ) |
13 |
4
|
rneqi |
|- ran F = ran ( n e. ZZ |-> ( n .x. A ) ) |
14 |
8 13
|
eqtr3di |
|- ( ph -> B = ran ( n e. ZZ |-> ( n .x. A ) ) ) |
15 |
1 2 12 6 7 14
|
cycsubggenodd |
|- ( ph -> ( ( od ` G ) ` A ) = if ( B e. Fin , ( # ` B ) , 0 ) ) |
16 |
10
|
iftrued |
|- ( ph -> if ( B e. Fin , ( # ` B ) , 0 ) = ( # ` B ) ) |
17 |
15 16
|
eqtrd |
|- ( ph -> ( ( od ` G ) ` A ) = ( # ` B ) ) |
18 |
17
|
oveq1d |
|- ( ph -> ( ( ( od ` G ) ` A ) / C ) = ( ( # ` B ) / C ) ) |
19 |
11
|
nnzd |
|- ( ph -> C e. ZZ ) |
20 |
1 12 2
|
odmulg |
|- ( ( G e. Grp /\ A e. B /\ C e. ZZ ) -> ( ( od ` G ) ` A ) = ( ( C gcd ( ( od ` G ) ` A ) ) x. ( ( od ` G ) ` ( C .x. A ) ) ) ) |
21 |
6 7 19 20
|
syl3anc |
|- ( ph -> ( ( od ` G ) ` A ) = ( ( C gcd ( ( od ` G ) ` A ) ) x. ( ( od ` G ) ` ( C .x. A ) ) ) ) |
22 |
1 12
|
odcl |
|- ( A e. B -> ( ( od ` G ) ` A ) e. NN0 ) |
23 |
|
nn0z |
|- ( ( ( od ` G ) ` A ) e. NN0 -> ( ( od ` G ) ` A ) e. ZZ ) |
24 |
7 22 23
|
3syl |
|- ( ph -> ( ( od ` G ) ` A ) e. ZZ ) |
25 |
9 17
|
breqtrrd |
|- ( ph -> C || ( ( od ` G ) ` A ) ) |
26 |
11 24 25
|
dvdsgcdidd |
|- ( ph -> ( C gcd ( ( od ` G ) ` A ) ) = C ) |
27 |
26
|
oveq1d |
|- ( ph -> ( ( C gcd ( ( od ` G ) ` A ) ) x. ( ( od ` G ) ` ( C .x. A ) ) ) = ( C x. ( ( od ` G ) ` ( C .x. A ) ) ) ) |
28 |
21 27
|
eqtrd |
|- ( ph -> ( ( od ` G ) ` A ) = ( C x. ( ( od ` G ) ` ( C .x. A ) ) ) ) |
29 |
1 12 7
|
odcld |
|- ( ph -> ( ( od ` G ) ` A ) e. NN0 ) |
30 |
29
|
nn0cnd |
|- ( ph -> ( ( od ` G ) ` A ) e. CC ) |
31 |
1 2 6 19 7
|
mulgcld |
|- ( ph -> ( C .x. A ) e. B ) |
32 |
1 12 31
|
odcld |
|- ( ph -> ( ( od ` G ) ` ( C .x. A ) ) e. NN0 ) |
33 |
32
|
nn0cnd |
|- ( ph -> ( ( od ` G ) ` ( C .x. A ) ) e. CC ) |
34 |
19
|
zcnd |
|- ( ph -> C e. CC ) |
35 |
11
|
nnne0d |
|- ( ph -> C =/= 0 ) |
36 |
30 33 34 35
|
divmul2d |
|- ( ph -> ( ( ( ( od ` G ) ` A ) / C ) = ( ( od ` G ) ` ( C .x. A ) ) <-> ( ( od ` G ) ` A ) = ( C x. ( ( od ` G ) ` ( C .x. A ) ) ) ) ) |
37 |
28 36
|
mpbird |
|- ( ph -> ( ( ( od ` G ) ` A ) / C ) = ( ( od ` G ) ` ( C .x. A ) ) ) |
38 |
18 37
|
eqtr3d |
|- ( ph -> ( ( # ` B ) / C ) = ( ( od ` G ) ` ( C .x. A ) ) ) |
39 |
3 38
|
eqtrid |
|- ( ph -> D = ( ( od ` G ) ` ( C .x. A ) ) ) |
40 |
5
|
rneqi |
|- ran H = ran ( n e. ZZ |-> ( n .x. ( C .x. A ) ) ) |
41 |
40
|
a1i |
|- ( ph -> ran H = ran ( n e. ZZ |-> ( n .x. ( C .x. A ) ) ) ) |
42 |
1 2 12 6 31 41
|
cycsubggenodd |
|- ( ph -> ( ( od ` G ) ` ( C .x. A ) ) = if ( ran H e. Fin , ( # ` ran H ) , 0 ) ) |
43 |
39 42
|
eqtrd |
|- ( ph -> D = if ( ran H e. Fin , ( # ` ran H ) , 0 ) ) |
44 |
|
iffalse |
|- ( -. ran H e. Fin -> if ( ran H e. Fin , ( # ` ran H ) , 0 ) = 0 ) |
45 |
43 44
|
sylan9eq |
|- ( ( ph /\ -. ran H e. Fin ) -> D = 0 ) |
46 |
3
|
a1i |
|- ( ph -> D = ( ( # ` B ) / C ) ) |
47 |
|
hashcl |
|- ( B e. Fin -> ( # ` B ) e. NN0 ) |
48 |
|
nn0cn |
|- ( ( # ` B ) e. NN0 -> ( # ` B ) e. CC ) |
49 |
10 47 48
|
3syl |
|- ( ph -> ( # ` B ) e. CC ) |
50 |
7 10
|
hashelne0d |
|- ( ph -> -. ( # ` B ) = 0 ) |
51 |
50
|
neqned |
|- ( ph -> ( # ` B ) =/= 0 ) |
52 |
49 34 51 35
|
divne0d |
|- ( ph -> ( ( # ` B ) / C ) =/= 0 ) |
53 |
46 52
|
eqnetrd |
|- ( ph -> D =/= 0 ) |
54 |
53
|
neneqd |
|- ( ph -> -. D = 0 ) |
55 |
54
|
adantr |
|- ( ( ph /\ -. ran H e. Fin ) -> -. D = 0 ) |
56 |
45 55
|
condan |
|- ( ph -> ran H e. Fin ) |
57 |
56
|
iftrued |
|- ( ph -> if ( ran H e. Fin , ( # ` ran H ) , 0 ) = ( # ` ran H ) ) |
58 |
39 42 57
|
3eqtrrd |
|- ( ph -> ( # ` ran H ) = D ) |