Step |
Hyp |
Ref |
Expression |
1 |
|
cycsubggenodd.1 |
|- B = ( Base ` G ) |
2 |
|
cycsubggenodd.2 |
|- .x. = ( .g ` G ) |
3 |
|
cycsubggenodd.3 |
|- O = ( od ` G ) |
4 |
|
cycsubggenodd.4 |
|- ( ph -> G e. Grp ) |
5 |
|
cycsubggenodd.5 |
|- ( ph -> A e. B ) |
6 |
|
cycsubggenodd.6 |
|- ( ph -> C = ran ( n e. ZZ |-> ( n .x. A ) ) ) |
7 |
|
eqid |
|- ( n e. ZZ |-> ( n .x. A ) ) = ( n e. ZZ |-> ( n .x. A ) ) |
8 |
1 3 2 7
|
dfod2 |
|- ( ( G e. Grp /\ A e. B ) -> ( O ` A ) = if ( ran ( n e. ZZ |-> ( n .x. A ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. A ) ) ) , 0 ) ) |
9 |
4 5 8
|
syl2anc |
|- ( ph -> ( O ` A ) = if ( ran ( n e. ZZ |-> ( n .x. A ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. A ) ) ) , 0 ) ) |
10 |
6
|
eqcomd |
|- ( ph -> ran ( n e. ZZ |-> ( n .x. A ) ) = C ) |
11 |
10
|
eleq1d |
|- ( ph -> ( ran ( n e. ZZ |-> ( n .x. A ) ) e. Fin <-> C e. Fin ) ) |
12 |
10
|
fveq2d |
|- ( ph -> ( # ` ran ( n e. ZZ |-> ( n .x. A ) ) ) = ( # ` C ) ) |
13 |
11 12
|
ifbieq1d |
|- ( ph -> if ( ran ( n e. ZZ |-> ( n .x. A ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. A ) ) ) , 0 ) = if ( C e. Fin , ( # ` C ) , 0 ) ) |
14 |
9 13
|
eqtrd |
|- ( ph -> ( O ` A ) = if ( C e. Fin , ( # ` C ) , 0 ) ) |