| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycsubggenodd.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | cycsubggenodd.2 |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | cycsubggenodd.3 |  |-  O = ( od ` G ) | 
						
							| 4 |  | cycsubggenodd.4 |  |-  ( ph -> G e. Grp ) | 
						
							| 5 |  | cycsubggenodd.5 |  |-  ( ph -> A e. B ) | 
						
							| 6 |  | cycsubggenodd.6 |  |-  ( ph -> C = ran ( n e. ZZ |-> ( n .x. A ) ) ) | 
						
							| 7 |  | eqid |  |-  ( n e. ZZ |-> ( n .x. A ) ) = ( n e. ZZ |-> ( n .x. A ) ) | 
						
							| 8 | 1 3 2 7 | dfod2 |  |-  ( ( G e. Grp /\ A e. B ) -> ( O ` A ) = if ( ran ( n e. ZZ |-> ( n .x. A ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. A ) ) ) , 0 ) ) | 
						
							| 9 | 4 5 8 | syl2anc |  |-  ( ph -> ( O ` A ) = if ( ran ( n e. ZZ |-> ( n .x. A ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. A ) ) ) , 0 ) ) | 
						
							| 10 | 6 | eqcomd |  |-  ( ph -> ran ( n e. ZZ |-> ( n .x. A ) ) = C ) | 
						
							| 11 | 10 | eleq1d |  |-  ( ph -> ( ran ( n e. ZZ |-> ( n .x. A ) ) e. Fin <-> C e. Fin ) ) | 
						
							| 12 | 10 | fveq2d |  |-  ( ph -> ( # ` ran ( n e. ZZ |-> ( n .x. A ) ) ) = ( # ` C ) ) | 
						
							| 13 | 11 12 | ifbieq1d |  |-  ( ph -> if ( ran ( n e. ZZ |-> ( n .x. A ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. A ) ) ) , 0 ) = if ( C e. Fin , ( # ` C ) , 0 ) ) | 
						
							| 14 | 9 13 | eqtrd |  |-  ( ph -> ( O ` A ) = if ( C e. Fin , ( # ` C ) , 0 ) ) |