Metamath Proof Explorer


Theorem cycsubggenodd

Description: Relationship between the order of a subgroup and the order of a generator of the subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses cycsubggenodd.1
|- B = ( Base ` G )
cycsubggenodd.2
|- .x. = ( .g ` G )
cycsubggenodd.3
|- O = ( od ` G )
cycsubggenodd.4
|- ( ph -> G e. Grp )
cycsubggenodd.5
|- ( ph -> A e. B )
cycsubggenodd.6
|- ( ph -> C = ran ( n e. ZZ |-> ( n .x. A ) ) )
Assertion cycsubggenodd
|- ( ph -> ( O ` A ) = if ( C e. Fin , ( # ` C ) , 0 ) )

Proof

Step Hyp Ref Expression
1 cycsubggenodd.1
 |-  B = ( Base ` G )
2 cycsubggenodd.2
 |-  .x. = ( .g ` G )
3 cycsubggenodd.3
 |-  O = ( od ` G )
4 cycsubggenodd.4
 |-  ( ph -> G e. Grp )
5 cycsubggenodd.5
 |-  ( ph -> A e. B )
6 cycsubggenodd.6
 |-  ( ph -> C = ran ( n e. ZZ |-> ( n .x. A ) ) )
7 eqid
 |-  ( n e. ZZ |-> ( n .x. A ) ) = ( n e. ZZ |-> ( n .x. A ) )
8 1 3 2 7 dfod2
 |-  ( ( G e. Grp /\ A e. B ) -> ( O ` A ) = if ( ran ( n e. ZZ |-> ( n .x. A ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. A ) ) ) , 0 ) )
9 4 5 8 syl2anc
 |-  ( ph -> ( O ` A ) = if ( ran ( n e. ZZ |-> ( n .x. A ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. A ) ) ) , 0 ) )
10 6 eqcomd
 |-  ( ph -> ran ( n e. ZZ |-> ( n .x. A ) ) = C )
11 10 eleq1d
 |-  ( ph -> ( ran ( n e. ZZ |-> ( n .x. A ) ) e. Fin <-> C e. Fin ) )
12 10 fveq2d
 |-  ( ph -> ( # ` ran ( n e. ZZ |-> ( n .x. A ) ) ) = ( # ` C ) )
13 11 12 ifbieq1d
 |-  ( ph -> if ( ran ( n e. ZZ |-> ( n .x. A ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. A ) ) ) , 0 ) = if ( C e. Fin , ( # ` C ) , 0 ) )
14 9 13 eqtrd
 |-  ( ph -> ( O ` A ) = if ( C e. Fin , ( # ` C ) , 0 ) )