| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycsubggenodd.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cycsubggenodd.2 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | cycsubggenodd.3 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 4 |  | cycsubggenodd.4 | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 5 |  | cycsubggenodd.5 | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
						
							| 6 |  | cycsubggenodd.6 | ⊢ ( 𝜑  →  𝐶  =  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) )  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) ) | 
						
							| 8 | 1 3 2 7 | dfod2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝐵 )  →  ( 𝑂 ‘ 𝐴 )  =  if ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) )  ∈  Fin ,  ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) ) ) ,  0 ) ) | 
						
							| 9 | 4 5 8 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐴 )  =  if ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) )  ∈  Fin ,  ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) ) ) ,  0 ) ) | 
						
							| 10 | 6 | eqcomd | ⊢ ( 𝜑  →  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) )  =  𝐶 ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( 𝜑  →  ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) )  ∈  Fin  ↔  𝐶  ∈  Fin ) ) | 
						
							| 12 | 10 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) ) )  =  ( ♯ ‘ 𝐶 ) ) | 
						
							| 13 | 11 12 | ifbieq1d | ⊢ ( 𝜑  →  if ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) )  ∈  Fin ,  ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) ) ) ,  0 )  =  if ( 𝐶  ∈  Fin ,  ( ♯ ‘ 𝐶 ) ,  0 ) ) | 
						
							| 14 | 9 13 | eqtrd | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐴 )  =  if ( 𝐶  ∈  Fin ,  ( ♯ ‘ 𝐶 ) ,  0 ) ) |