Metamath Proof Explorer


Theorem cycsubggenodd

Description: Relationship between the order of a subgroup and the order of a generator of the subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses cycsubggenodd.1 𝐵 = ( Base ‘ 𝐺 )
cycsubggenodd.2 · = ( .g𝐺 )
cycsubggenodd.3 𝑂 = ( od ‘ 𝐺 )
cycsubggenodd.4 ( 𝜑𝐺 ∈ Grp )
cycsubggenodd.5 ( 𝜑𝐴𝐵 )
cycsubggenodd.6 ( 𝜑𝐶 = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) )
Assertion cycsubggenodd ( 𝜑 → ( 𝑂𝐴 ) = if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) )

Proof

Step Hyp Ref Expression
1 cycsubggenodd.1 𝐵 = ( Base ‘ 𝐺 )
2 cycsubggenodd.2 · = ( .g𝐺 )
3 cycsubggenodd.3 𝑂 = ( od ‘ 𝐺 )
4 cycsubggenodd.4 ( 𝜑𝐺 ∈ Grp )
5 cycsubggenodd.5 ( 𝜑𝐴𝐵 )
6 cycsubggenodd.6 ( 𝜑𝐶 = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) )
7 eqid ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) )
8 1 3 2 7 dfod2 ( ( 𝐺 ∈ Grp ∧ 𝐴𝐵 ) → ( 𝑂𝐴 ) = if ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ) , 0 ) )
9 4 5 8 syl2anc ( 𝜑 → ( 𝑂𝐴 ) = if ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ) , 0 ) )
10 6 eqcomd ( 𝜑 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) = 𝐶 )
11 10 eleq1d ( 𝜑 → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ∈ Fin ↔ 𝐶 ∈ Fin ) )
12 10 fveq2d ( 𝜑 → ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ) = ( ♯ ‘ 𝐶 ) )
13 11 12 ifbieq1d ( 𝜑 → if ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ) , 0 ) = if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) )
14 9 13 eqtrd ( 𝜑 → ( 𝑂𝐴 ) = if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) )