Step |
Hyp |
Ref |
Expression |
1 |
|
cycsubggenodd.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
cycsubggenodd.2 |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
cycsubggenodd.3 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
4 |
|
cycsubggenodd.4 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
5 |
|
cycsubggenodd.5 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
6 |
|
cycsubggenodd.6 |
⊢ ( 𝜑 → 𝐶 = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ) |
7 |
|
eqid |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) |
8 |
1 3 2 7
|
dfod2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ( 𝑂 ‘ 𝐴 ) = if ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ) , 0 ) ) |
9 |
4 5 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) = if ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ) , 0 ) ) |
10 |
6
|
eqcomd |
⊢ ( 𝜑 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) = 𝐶 ) |
11 |
10
|
eleq1d |
⊢ ( 𝜑 → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ∈ Fin ↔ 𝐶 ∈ Fin ) ) |
12 |
10
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ) = ( ♯ ‘ 𝐶 ) ) |
13 |
11 12
|
ifbieq1d |
⊢ ( 𝜑 → if ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ) , 0 ) = if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) |
14 |
9 13
|
eqtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) = if ( 𝐶 ∈ Fin , ( ♯ ‘ 𝐶 ) , 0 ) ) |