| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablsimpgfind.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ablsimpgfind.2 | ⊢ ( 𝜑  →  𝐺  ∈  Abel ) | 
						
							| 3 |  | ablsimpgfind.3 | ⊢ ( 𝜑  →  𝐺  ∈  SimpGrp ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ∈  Fin )  →  ¬  𝐵  ∈  Fin ) | 
						
							| 5 | 4 | iffalsed | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ∈  Fin )  →  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 )  =  0 ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 7 | 1 6 3 | simpgnideld | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐵 ¬  𝑥  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 8 |  | neqne | ⊢ ( ¬  𝑥  =  ( 0g ‘ 𝐺 )  →  𝑥  ≠  ( 0g ‘ 𝐺 ) ) | 
						
							| 9 | 8 | reximi | ⊢ ( ∃ 𝑥  ∈  𝐵 ¬  𝑥  =  ( 0g ‘ 𝐺 )  →  ∃ 𝑥  ∈  𝐵 𝑥  ≠  ( 0g ‘ 𝐺 ) ) | 
						
							| 10 | 7 9 | syl | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐵 𝑥  ≠  ( 0g ‘ 𝐺 ) ) | 
						
							| 11 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 12 |  | eqid | ⊢ ( od ‘ 𝐺 )  =  ( od ‘ 𝐺 ) | 
						
							| 13 | 3 | simpggrpd | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  →  𝐺  ∈  Grp ) | 
						
							| 15 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 16 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  ∧  𝑦  ∈  𝐵 )  →  𝐺  ∈  Abel ) | 
						
							| 17 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  ∧  𝑦  ∈  𝐵 )  →  𝐺  ∈  SimpGrp ) | 
						
							| 18 | 15 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  ∧  𝑦  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 19 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  ∧  𝑦  ∈  𝐵 )  →  𝑥  ≠  ( 0g ‘ 𝐺 ) ) | 
						
							| 20 | 19 | neneqd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  ∧  𝑦  ∈  𝐵 )  →  ¬  𝑥  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝐵 ) | 
						
							| 22 | 1 6 11 16 17 18 20 21 | ablsimpg1gend | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  ∧  𝑦  ∈  𝐵 )  →  ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 23 | 22 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  →  ( 𝑦  ∈  𝐵  →  ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 24 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) )  →  𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 25 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) )  →  𝐺  ∈  Grp ) | 
						
							| 26 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) )  →  𝑛  ∈  ℤ ) | 
						
							| 27 | 15 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 28 | 1 11 25 26 27 | mulgcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) )  →  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 )  ∈  𝐵 ) | 
						
							| 29 | 24 28 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 30 | 29 | rexlimdvaa | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  →  ( ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 )  →  𝑦  ∈  𝐵 ) ) | 
						
							| 31 | 23 30 | impbid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  →  ( 𝑦  ∈  𝐵  ↔  ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 32 | 31 | eqabdv | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  →  𝐵  =  { 𝑦  ∣  ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) } ) | 
						
							| 33 |  | eqid | ⊢ ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 34 | 33 | rnmpt | ⊢ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  { 𝑦  ∣  ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) } | 
						
							| 35 | 32 34 | eqtr4di | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  →  𝐵  =  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 36 | 1 11 12 14 15 35 | cycsubggenodd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 37 | 1 6 11 12 2 3 | ablsimpgfindlem2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 2 ( .g ‘ 𝐺 ) 𝑥 )  =  ( 0g ‘ 𝐺 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ≠  0 ) | 
						
							| 38 | 1 6 11 12 2 3 | ablsimpgfindlem1 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 2 ( .g ‘ 𝐺 ) 𝑥 )  ≠  ( 0g ‘ 𝐺 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ≠  0 ) | 
						
							| 39 | 37 38 | pm2.61dane | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ≠  0 ) | 
						
							| 40 | 39 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ≠  0 ) | 
						
							| 41 | 36 40 | eqnetrrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠  ( 0g ‘ 𝐺 ) ) )  →  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 )  ≠  0 ) | 
						
							| 42 | 10 41 | rexlimddv | ⊢ ( 𝜑  →  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 )  ≠  0 ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ∈  Fin )  →  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 )  ≠  0 ) | 
						
							| 44 | 5 43 | pm2.21ddne | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ∈  Fin )  →  ⊥ ) | 
						
							| 45 | 44 | efald | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) |