Step |
Hyp |
Ref |
Expression |
1 |
|
ablsimpgfind.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablsimpgfind.2 |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
3 |
|
ablsimpgfind.3 |
⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) |
4 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ Fin ) → ¬ 𝐵 ∈ Fin ) |
5 |
4
|
iffalsed |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ Fin ) → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) = 0 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
7 |
1 6 3
|
simpgnideld |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 ¬ 𝑥 = ( 0g ‘ 𝐺 ) ) |
8 |
|
neqne |
⊢ ( ¬ 𝑥 = ( 0g ‘ 𝐺 ) → 𝑥 ≠ ( 0g ‘ 𝐺 ) ) |
9 |
8
|
reximi |
⊢ ( ∃ 𝑥 ∈ 𝐵 ¬ 𝑥 = ( 0g ‘ 𝐺 ) → ∃ 𝑥 ∈ 𝐵 𝑥 ≠ ( 0g ‘ 𝐺 ) ) |
10 |
7 9
|
syl |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 𝑥 ≠ ( 0g ‘ 𝐺 ) ) |
11 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
12 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
13 |
3
|
simpggrpd |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) → 𝐺 ∈ Grp ) |
15 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) → 𝑥 ∈ 𝐵 ) |
16 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝐺 ∈ Abel ) |
17 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝐺 ∈ SimpGrp ) |
18 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
19 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ≠ ( 0g ‘ 𝐺 ) ) |
20 |
19
|
neneqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝑥 = ( 0g ‘ 𝐺 ) ) |
21 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
22 |
1 6 11 16 17 18 20 21
|
ablsimpg1gend |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) |
23 |
22
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) → ( 𝑦 ∈ 𝐵 → ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
24 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) → 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) |
25 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) → 𝐺 ∈ Grp ) |
26 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) → 𝑛 ∈ ℤ ) |
27 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) → 𝑥 ∈ 𝐵 ) |
28 |
1 11 25 26 27
|
mulgcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) → ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) |
29 |
24 28
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) → 𝑦 ∈ 𝐵 ) |
30 |
29
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) → ( ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) → 𝑦 ∈ 𝐵 ) ) |
31 |
23 30
|
impbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) → ( 𝑦 ∈ 𝐵 ↔ ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
32 |
31
|
abbi2dv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) → 𝐵 = { 𝑦 ∣ ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) } ) |
33 |
|
eqid |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) |
34 |
33
|
rnmpt |
⊢ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = { 𝑦 ∣ ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) } |
35 |
32 34
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) → 𝐵 = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
36 |
1 11 12 14 15 35
|
cycsubggenodd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
37 |
1 6 11 12 2 3
|
ablsimpgfindlem2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 2 ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ≠ 0 ) |
38 |
1 6 11 12 2 3
|
ablsimpgfindlem1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 2 ( .g ‘ 𝐺 ) 𝑥 ) ≠ ( 0g ‘ 𝐺 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ≠ 0 ) |
39 |
37 38
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ≠ 0 ) |
40 |
39
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ≠ 0 ) |
41 |
36 40
|
eqnetrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ ( 0g ‘ 𝐺 ) ) ) → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ≠ 0 ) |
42 |
10 41
|
rexlimddv |
⊢ ( 𝜑 → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ≠ 0 ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ Fin ) → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ≠ 0 ) |
44 |
5 43
|
pm2.21ddne |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ Fin ) → ⊥ ) |
45 |
44
|
efald |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |