Metamath Proof Explorer


Theorem ablsimpgfindlem2

Description: Lemma for ablsimpgfind . An element of an abelian finite simple group which squares to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses ablsimpgfindlem1.1 𝐵 = ( Base ‘ 𝐺 )
ablsimpgfindlem1.2 0 = ( 0g𝐺 )
ablsimpgfindlem1.3 · = ( .g𝐺 )
ablsimpgfindlem1.4 𝑂 = ( od ‘ 𝐺 )
ablsimpgfindlem1.5 ( 𝜑𝐺 ∈ Abel )
ablsimpgfindlem1.6 ( 𝜑𝐺 ∈ SimpGrp )
Assertion ablsimpgfindlem2 ( ( ( 𝜑𝑥𝐵 ) ∧ ( 2 · 𝑥 ) = 0 ) → ( 𝑂𝑥 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 ablsimpgfindlem1.1 𝐵 = ( Base ‘ 𝐺 )
2 ablsimpgfindlem1.2 0 = ( 0g𝐺 )
3 ablsimpgfindlem1.3 · = ( .g𝐺 )
4 ablsimpgfindlem1.4 𝑂 = ( od ‘ 𝐺 )
5 ablsimpgfindlem1.5 ( 𝜑𝐺 ∈ Abel )
6 ablsimpgfindlem1.6 ( 𝜑𝐺 ∈ SimpGrp )
7 simpr ( ( ( 𝜑𝑥𝐵 ) ∧ ( 2 · 𝑥 ) = 0 ) → ( 2 · 𝑥 ) = 0 )
8 6 simpggrpd ( 𝜑𝐺 ∈ Grp )
9 8 adantr ( ( 𝜑𝑥𝐵 ) → 𝐺 ∈ Grp )
10 simpr ( ( 𝜑𝑥𝐵 ) → 𝑥𝐵 )
11 2z 2 ∈ ℤ
12 11 a1i ( ( 𝜑𝑥𝐵 ) → 2 ∈ ℤ )
13 9 10 12 3jca ( ( 𝜑𝑥𝐵 ) → ( 𝐺 ∈ Grp ∧ 𝑥𝐵 ∧ 2 ∈ ℤ ) )
14 13 adantr ( ( ( 𝜑𝑥𝐵 ) ∧ ( 2 · 𝑥 ) = 0 ) → ( 𝐺 ∈ Grp ∧ 𝑥𝐵 ∧ 2 ∈ ℤ ) )
15 1 4 3 2 oddvds ( ( 𝐺 ∈ Grp ∧ 𝑥𝐵 ∧ 2 ∈ ℤ ) → ( ( 𝑂𝑥 ) ∥ 2 ↔ ( 2 · 𝑥 ) = 0 ) )
16 14 15 syl ( ( ( 𝜑𝑥𝐵 ) ∧ ( 2 · 𝑥 ) = 0 ) → ( ( 𝑂𝑥 ) ∥ 2 ↔ ( 2 · 𝑥 ) = 0 ) )
17 7 16 mpbird ( ( ( 𝜑𝑥𝐵 ) ∧ ( 2 · 𝑥 ) = 0 ) → ( 𝑂𝑥 ) ∥ 2 )
18 2ne0 2 ≠ 0
19 18 a1i ( ( ( 𝜑𝑥𝐵 ) ∧ ( 2 · 𝑥 ) = 0 ) → 2 ≠ 0 )
20 19 neneqd ( ( ( 𝜑𝑥𝐵 ) ∧ ( 2 · 𝑥 ) = 0 ) → ¬ 2 = 0 )
21 0dvds ( 2 ∈ ℤ → ( 0 ∥ 2 ↔ 2 = 0 ) )
22 11 21 ax-mp ( 0 ∥ 2 ↔ 2 = 0 )
23 20 22 sylnibr ( ( ( 𝜑𝑥𝐵 ) ∧ ( 2 · 𝑥 ) = 0 ) → ¬ 0 ∥ 2 )
24 nbrne2 ( ( ( 𝑂𝑥 ) ∥ 2 ∧ ¬ 0 ∥ 2 ) → ( 𝑂𝑥 ) ≠ 0 )
25 17 23 24 syl2anc ( ( ( 𝜑𝑥𝐵 ) ∧ ( 2 · 𝑥 ) = 0 ) → ( 𝑂𝑥 ) ≠ 0 )