Step |
Hyp |
Ref |
Expression |
1 |
|
ablsimpgfindlem1.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablsimpgfindlem1.2 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
ablsimpgfindlem1.3 |
⊢ · = ( .g ‘ 𝐺 ) |
4 |
|
ablsimpgfindlem1.4 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
5 |
|
ablsimpgfindlem1.5 |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
6 |
|
ablsimpgfindlem1.6 |
⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) |
7 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 2 · 𝑥 ) = 0 ) → ( 2 · 𝑥 ) = 0 ) |
8 |
6
|
simpggrpd |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
11 |
|
2z |
⊢ 2 ∈ ℤ |
12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 2 ∈ ℤ ) |
13 |
9 10 12
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 2 ∈ ℤ ) ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 2 · 𝑥 ) = 0 ) → ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 2 ∈ ℤ ) ) |
15 |
1 4 3 2
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 2 ∈ ℤ ) → ( ( 𝑂 ‘ 𝑥 ) ∥ 2 ↔ ( 2 · 𝑥 ) = 0 ) ) |
16 |
14 15
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 2 · 𝑥 ) = 0 ) → ( ( 𝑂 ‘ 𝑥 ) ∥ 2 ↔ ( 2 · 𝑥 ) = 0 ) ) |
17 |
7 16
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 2 · 𝑥 ) = 0 ) → ( 𝑂 ‘ 𝑥 ) ∥ 2 ) |
18 |
|
2ne0 |
⊢ 2 ≠ 0 |
19 |
18
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 2 · 𝑥 ) = 0 ) → 2 ≠ 0 ) |
20 |
19
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 2 · 𝑥 ) = 0 ) → ¬ 2 = 0 ) |
21 |
|
0dvds |
⊢ ( 2 ∈ ℤ → ( 0 ∥ 2 ↔ 2 = 0 ) ) |
22 |
11 21
|
ax-mp |
⊢ ( 0 ∥ 2 ↔ 2 = 0 ) |
23 |
20 22
|
sylnibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 2 · 𝑥 ) = 0 ) → ¬ 0 ∥ 2 ) |
24 |
|
nbrne2 |
⊢ ( ( ( 𝑂 ‘ 𝑥 ) ∥ 2 ∧ ¬ 0 ∥ 2 ) → ( 𝑂 ‘ 𝑥 ) ≠ 0 ) |
25 |
17 23 24
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 2 · 𝑥 ) = 0 ) → ( 𝑂 ‘ 𝑥 ) ≠ 0 ) |