| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablsimpgfindlem1.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ablsimpgfindlem1.2 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | ablsimpgfindlem1.3 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 4 |  | ablsimpgfindlem1.4 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 5 |  | ablsimpgfindlem1.5 | ⊢ ( 𝜑  →  𝐺  ∈  Abel ) | 
						
							| 6 |  | ablsimpgfindlem1.6 | ⊢ ( 𝜑  →  𝐺  ∈  SimpGrp ) | 
						
							| 7 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 2  ·  𝑥 )  =   0  )  →  ( 2  ·  𝑥 )  =   0  ) | 
						
							| 8 | 6 | simpggrpd | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐺  ∈  Grp ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 11 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  2  ∈  ℤ ) | 
						
							| 13 | 9 10 12 | 3jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵  ∧  2  ∈  ℤ ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 2  ·  𝑥 )  =   0  )  →  ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵  ∧  2  ∈  ℤ ) ) | 
						
							| 15 | 1 4 3 2 | oddvds | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵  ∧  2  ∈  ℤ )  →  ( ( 𝑂 ‘ 𝑥 )  ∥  2  ↔  ( 2  ·  𝑥 )  =   0  ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 2  ·  𝑥 )  =   0  )  →  ( ( 𝑂 ‘ 𝑥 )  ∥  2  ↔  ( 2  ·  𝑥 )  =   0  ) ) | 
						
							| 17 | 7 16 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 2  ·  𝑥 )  =   0  )  →  ( 𝑂 ‘ 𝑥 )  ∥  2 ) | 
						
							| 18 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 19 | 18 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 2  ·  𝑥 )  =   0  )  →  2  ≠  0 ) | 
						
							| 20 | 19 | neneqd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 2  ·  𝑥 )  =   0  )  →  ¬  2  =  0 ) | 
						
							| 21 |  | 0dvds | ⊢ ( 2  ∈  ℤ  →  ( 0  ∥  2  ↔  2  =  0 ) ) | 
						
							| 22 | 11 21 | ax-mp | ⊢ ( 0  ∥  2  ↔  2  =  0 ) | 
						
							| 23 | 20 22 | sylnibr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 2  ·  𝑥 )  =   0  )  →  ¬  0  ∥  2 ) | 
						
							| 24 |  | nbrne2 | ⊢ ( ( ( 𝑂 ‘ 𝑥 )  ∥  2  ∧  ¬  0  ∥  2 )  →  ( 𝑂 ‘ 𝑥 )  ≠  0 ) | 
						
							| 25 | 17 23 24 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 2  ·  𝑥 )  =   0  )  →  ( 𝑂 ‘ 𝑥 )  ≠  0 ) |