Metamath Proof Explorer


Theorem ablsimpgfindlem2

Description: Lemma for ablsimpgfind . An element of an abelian finite simple group which squares to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses ablsimpgfindlem1.1 B=BaseG
ablsimpgfindlem1.2 0˙=0G
ablsimpgfindlem1.3 ·˙=G
ablsimpgfindlem1.4 O=odG
ablsimpgfindlem1.5 φGAbel
ablsimpgfindlem1.6 φGSimpGrp
Assertion ablsimpgfindlem2 φxB2·˙x=0˙Ox0

Proof

Step Hyp Ref Expression
1 ablsimpgfindlem1.1 B=BaseG
2 ablsimpgfindlem1.2 0˙=0G
3 ablsimpgfindlem1.3 ·˙=G
4 ablsimpgfindlem1.4 O=odG
5 ablsimpgfindlem1.5 φGAbel
6 ablsimpgfindlem1.6 φGSimpGrp
7 simpr φxB2·˙x=0˙2·˙x=0˙
8 6 simpggrpd φGGrp
9 8 adantr φxBGGrp
10 simpr φxBxB
11 2z 2
12 11 a1i φxB2
13 9 10 12 3jca φxBGGrpxB2
14 13 adantr φxB2·˙x=0˙GGrpxB2
15 1 4 3 2 oddvds GGrpxB2Ox22·˙x=0˙
16 14 15 syl φxB2·˙x=0˙Ox22·˙x=0˙
17 7 16 mpbird φxB2·˙x=0˙Ox2
18 2ne0 20
19 18 a1i φxB2·˙x=0˙20
20 19 neneqd φxB2·˙x=0˙¬2=0
21 0dvds 2022=0
22 11 21 ax-mp 022=0
23 20 22 sylnibr φxB2·˙x=0˙¬02
24 nbrne2 Ox2¬02Ox0
25 17 23 24 syl2anc φxB2·˙x=0˙Ox0