Description: Lemma for ablsimpgfind . An element of an abelian finite simple group which squares to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablsimpgfindlem1.1 | |
|
ablsimpgfindlem1.2 | |
||
ablsimpgfindlem1.3 | |
||
ablsimpgfindlem1.4 | |
||
ablsimpgfindlem1.5 | |
||
ablsimpgfindlem1.6 | |
||
Assertion | ablsimpgfindlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsimpgfindlem1.1 | |
|
2 | ablsimpgfindlem1.2 | |
|
3 | ablsimpgfindlem1.3 | |
|
4 | ablsimpgfindlem1.4 | |
|
5 | ablsimpgfindlem1.5 | |
|
6 | ablsimpgfindlem1.6 | |
|
7 | simpr | |
|
8 | 6 | simpggrpd | |
9 | 8 | adantr | |
10 | simpr | |
|
11 | 2z | |
|
12 | 11 | a1i | |
13 | 9 10 12 | 3jca | |
14 | 13 | adantr | |
15 | 1 4 3 2 | oddvds | |
16 | 14 15 | syl | |
17 | 7 16 | mpbird | |
18 | 2ne0 | |
|
19 | 18 | a1i | |
20 | 19 | neneqd | |
21 | 0dvds | |
|
22 | 11 21 | ax-mp | |
23 | 20 22 | sylnibr | |
24 | nbrne2 | |
|
25 | 17 23 24 | syl2anc | |