| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablsimpgfind.1 |
|
| 2 |
|
ablsimpgfind.2 |
|
| 3 |
|
ablsimpgfind.3 |
|
| 4 |
|
simpr |
|
| 5 |
4
|
iffalsed |
|
| 6 |
|
eqid |
|
| 7 |
1 6 3
|
simpgnideld |
|
| 8 |
|
neqne |
|
| 9 |
8
|
reximi |
|
| 10 |
7 9
|
syl |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
3
|
simpggrpd |
|
| 14 |
13
|
adantr |
|
| 15 |
|
simprl |
|
| 16 |
2
|
ad2antrr |
|
| 17 |
3
|
ad2antrr |
|
| 18 |
15
|
adantr |
|
| 19 |
|
simplrr |
|
| 20 |
19
|
neneqd |
|
| 21 |
|
simpr |
|
| 22 |
1 6 11 16 17 18 20 21
|
ablsimpg1gend |
|
| 23 |
22
|
ex |
|
| 24 |
|
simprr |
|
| 25 |
13
|
ad2antrr |
|
| 26 |
|
simprl |
|
| 27 |
15
|
adantr |
|
| 28 |
1 11 25 26 27
|
mulgcld |
|
| 29 |
24 28
|
eqeltrd |
|
| 30 |
29
|
rexlimdvaa |
|
| 31 |
23 30
|
impbid |
|
| 32 |
31
|
eqabdv |
|
| 33 |
|
eqid |
|
| 34 |
33
|
rnmpt |
|
| 35 |
32 34
|
eqtr4di |
|
| 36 |
1 11 12 14 15 35
|
cycsubggenodd |
|
| 37 |
1 6 11 12 2 3
|
ablsimpgfindlem2 |
|
| 38 |
1 6 11 12 2 3
|
ablsimpgfindlem1 |
|
| 39 |
37 38
|
pm2.61dane |
|
| 40 |
39
|
adantrr |
|
| 41 |
36 40
|
eqnetrrd |
|
| 42 |
10 41
|
rexlimddv |
|
| 43 |
42
|
adantr |
|
| 44 |
5 43
|
pm2.21ddne |
|
| 45 |
44
|
efald |
|