Step |
Hyp |
Ref |
Expression |
1 |
|
ablsimpgfindlem1.1 |
|
2 |
|
ablsimpgfindlem1.2 |
|
3 |
|
ablsimpgfindlem1.3 |
|
4 |
|
ablsimpgfindlem1.4 |
|
5 |
|
ablsimpgfindlem1.5 |
|
6 |
|
ablsimpgfindlem1.6 |
|
7 |
5
|
3ad2ant1 |
|
8 |
6
|
3ad2ant1 |
|
9 |
6
|
simpggrpd |
|
10 |
9
|
3ad2ant1 |
|
11 |
|
2z |
|
12 |
11
|
a1i |
|
13 |
|
simp2 |
|
14 |
1 3 10 12 13
|
mulgcld |
|
15 |
|
simp3 |
|
16 |
15
|
neneqd |
|
17 |
1 2 3 7 8 14 16 13
|
ablsimpg1gend |
|
18 |
|
simprr |
|
19 |
|
simpl2 |
|
20 |
1 3
|
mulg1 |
|
21 |
19 20
|
syl |
|
22 |
10
|
adantr |
|
23 |
|
simprl |
|
24 |
11
|
a1i |
|
25 |
1 3
|
mulgassr |
|
26 |
22 23 24 19 25
|
syl13anc |
|
27 |
18 21 26
|
3eqtr4rd |
|
28 |
24 23
|
zmulcld |
|
29 |
|
1zzd |
|
30 |
1 4 3 2
|
odcong |
|
31 |
22 19 28 29 30
|
syl112anc |
|
32 |
27 31
|
mpbird |
|
33 |
|
0zd |
|
34 |
|
zneo |
|
35 |
|
2t0e0 |
|
36 |
35
|
oveq1i |
|
37 |
|
0p1e1 |
|
38 |
36 37
|
eqtri |
|
39 |
38
|
a1i |
|
40 |
34 39
|
neeqtrd |
|
41 |
|
oveq1 |
|
42 |
41 37
|
eqtr2di |
|
43 |
42
|
adantl |
|
44 |
|
2cnd |
|
45 |
|
zcn |
|
46 |
44 45
|
mulcld |
|
47 |
|
1cnd |
|
48 |
|
npcan |
|
49 |
46 47 48
|
syl2an |
|
50 |
43 49
|
eqtr2d |
|
51 |
50
|
ex |
|
52 |
51
|
necon3ad |
|
53 |
40 52
|
syl5 |
|
54 |
53
|
anabsi5 |
|
55 |
23 33 54
|
syl2anc |
|
56 |
28 29
|
zsubcld |
|
57 |
|
0dvds |
|
58 |
56 57
|
syl |
|
59 |
55 58
|
mtbird |
|
60 |
|
nbrne2 |
|
61 |
32 59 60
|
syl2anc |
|
62 |
17 61
|
rexlimddv |
|
63 |
62
|
3expa |
|