Metamath Proof Explorer


Theorem ablsimpgfindlem1

Description: Lemma for ablsimpgfind . An element of an abelian finite simple group which doesn't square to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023) (Proof shortened by Rohan Ridenour, 31-Oct-2023)

Ref Expression
Hypotheses ablsimpgfindlem1.1 B=BaseG
ablsimpgfindlem1.2 0˙=0G
ablsimpgfindlem1.3 ·˙=G
ablsimpgfindlem1.4 O=odG
ablsimpgfindlem1.5 φGAbel
ablsimpgfindlem1.6 φGSimpGrp
Assertion ablsimpgfindlem1 φxB2·˙x0˙Ox0

Proof

Step Hyp Ref Expression
1 ablsimpgfindlem1.1 B=BaseG
2 ablsimpgfindlem1.2 0˙=0G
3 ablsimpgfindlem1.3 ·˙=G
4 ablsimpgfindlem1.4 O=odG
5 ablsimpgfindlem1.5 φGAbel
6 ablsimpgfindlem1.6 φGSimpGrp
7 5 3ad2ant1 φxB2·˙x0˙GAbel
8 6 3ad2ant1 φxB2·˙x0˙GSimpGrp
9 6 simpggrpd φGGrp
10 9 3ad2ant1 φxB2·˙x0˙GGrp
11 2z 2
12 11 a1i φxB2·˙x0˙2
13 simp2 φxB2·˙x0˙xB
14 1 3 10 12 13 mulgcld φxB2·˙x0˙2·˙xB
15 simp3 φxB2·˙x0˙2·˙x0˙
16 15 neneqd φxB2·˙x0˙¬2·˙x=0˙
17 1 2 3 7 8 14 16 13 ablsimpg1gend φxB2·˙x0˙yx=y·˙2·˙x
18 simprr φxB2·˙x0˙yx=y·˙2·˙xx=y·˙2·˙x
19 simpl2 φxB2·˙x0˙yx=y·˙2·˙xxB
20 1 3 mulg1 xB1·˙x=x
21 19 20 syl φxB2·˙x0˙yx=y·˙2·˙x1·˙x=x
22 10 adantr φxB2·˙x0˙yx=y·˙2·˙xGGrp
23 simprl φxB2·˙x0˙yx=y·˙2·˙xy
24 11 a1i φxB2·˙x0˙yx=y·˙2·˙x2
25 1 3 mulgassr GGrpy2xB2y·˙x=y·˙2·˙x
26 22 23 24 19 25 syl13anc φxB2·˙x0˙yx=y·˙2·˙x2y·˙x=y·˙2·˙x
27 18 21 26 3eqtr4rd φxB2·˙x0˙yx=y·˙2·˙x2y·˙x=1·˙x
28 24 23 zmulcld φxB2·˙x0˙yx=y·˙2·˙x2y
29 1zzd φxB2·˙x0˙yx=y·˙2·˙x1
30 1 4 3 2 odcong GGrpxB2y1Ox2y12y·˙x=1·˙x
31 22 19 28 29 30 syl112anc φxB2·˙x0˙yx=y·˙2·˙xOx2y12y·˙x=1·˙x
32 27 31 mpbird φxB2·˙x0˙yx=y·˙2·˙xOx2y1
33 0zd φxB2·˙x0˙yx=y·˙2·˙x0
34 zneo y02y20+1
35 2t0e0 20=0
36 35 oveq1i 20+1=0+1
37 0p1e1 0+1=1
38 36 37 eqtri 20+1=1
39 38 a1i y020+1=1
40 34 39 neeqtrd y02y1
41 oveq1 2y1=02y-1+1=0+1
42 41 37 eqtr2di 2y1=01=2y-1+1
43 42 adantl y2y1=01=2y-1+1
44 2cnd y2
45 zcn yy
46 44 45 mulcld y2y
47 1cnd 2y1=01
48 npcan 2y12y-1+1=2y
49 46 47 48 syl2an y2y1=02y-1+1=2y
50 43 49 eqtr2d y2y1=02y=1
51 50 ex y2y1=02y=1
52 51 necon3ad y2y1¬2y1=0
53 40 52 syl5 yy0¬2y1=0
54 53 anabsi5 y0¬2y1=0
55 23 33 54 syl2anc φxB2·˙x0˙yx=y·˙2·˙x¬2y1=0
56 28 29 zsubcld φxB2·˙x0˙yx=y·˙2·˙x2y1
57 0dvds 2y102y12y1=0
58 56 57 syl φxB2·˙x0˙yx=y·˙2·˙x02y12y1=0
59 55 58 mtbird φxB2·˙x0˙yx=y·˙2·˙x¬02y1
60 nbrne2 Ox2y1¬02y1Ox0
61 32 59 60 syl2anc φxB2·˙x0˙yx=y·˙2·˙xOx0
62 17 61 rexlimddv φxB2·˙x0˙Ox0
63 62 3expa φxB2·˙x0˙Ox0