Description: Lemma for ablsimpgfind . An element of an abelian finite simple group which doesn't square to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023) (Proof shortened by Rohan Ridenour, 31-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablsimpgfindlem1.1 | |
|
ablsimpgfindlem1.2 | |
||
ablsimpgfindlem1.3 | |
||
ablsimpgfindlem1.4 | |
||
ablsimpgfindlem1.5 | |
||
ablsimpgfindlem1.6 | |
||
Assertion | ablsimpgfindlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsimpgfindlem1.1 | |
|
2 | ablsimpgfindlem1.2 | |
|
3 | ablsimpgfindlem1.3 | |
|
4 | ablsimpgfindlem1.4 | |
|
5 | ablsimpgfindlem1.5 | |
|
6 | ablsimpgfindlem1.6 | |
|
7 | 5 | 3ad2ant1 | |
8 | 6 | 3ad2ant1 | |
9 | 6 | simpggrpd | |
10 | 9 | 3ad2ant1 | |
11 | 2z | |
|
12 | 11 | a1i | |
13 | simp2 | |
|
14 | 1 3 10 12 13 | mulgcld | |
15 | simp3 | |
|
16 | 15 | neneqd | |
17 | 1 2 3 7 8 14 16 13 | ablsimpg1gend | |
18 | simprr | |
|
19 | simpl2 | |
|
20 | 1 3 | mulg1 | |
21 | 19 20 | syl | |
22 | 10 | adantr | |
23 | simprl | |
|
24 | 11 | a1i | |
25 | 1 3 | mulgassr | |
26 | 22 23 24 19 25 | syl13anc | |
27 | 18 21 26 | 3eqtr4rd | |
28 | 24 23 | zmulcld | |
29 | 1zzd | |
|
30 | 1 4 3 2 | odcong | |
31 | 22 19 28 29 30 | syl112anc | |
32 | 27 31 | mpbird | |
33 | 0zd | |
|
34 | zneo | |
|
35 | 2t0e0 | |
|
36 | 35 | oveq1i | |
37 | 0p1e1 | |
|
38 | 36 37 | eqtri | |
39 | 38 | a1i | |
40 | 34 39 | neeqtrd | |
41 | oveq1 | |
|
42 | 41 37 | eqtr2di | |
43 | 42 | adantl | |
44 | 2cnd | |
|
45 | zcn | |
|
46 | 44 45 | mulcld | |
47 | 1cnd | |
|
48 | npcan | |
|
49 | 46 47 48 | syl2an | |
50 | 43 49 | eqtr2d | |
51 | 50 | ex | |
52 | 51 | necon3ad | |
53 | 40 52 | syl5 | |
54 | 53 | anabsi5 | |
55 | 23 33 54 | syl2anc | |
56 | 28 29 | zsubcld | |
57 | 0dvds | |
|
58 | 56 57 | syl | |
59 | 55 58 | mtbird | |
60 | nbrne2 | |
|
61 | 32 59 60 | syl2anc | |
62 | 17 61 | rexlimddv | |
63 | 62 | 3expa | |