Description: An abelian simple group is generated by any non-identity element. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablsimpg1gend.1 | |
|
ablsimpg1gend.2 | |
||
ablsimpg1gend.3 | |
||
ablsimpg1gend.4 | |
||
ablsimpg1gend.5 | |
||
ablsimpg1gend.6 | |
||
ablsimpg1gend.7 | |
||
ablsimpg1gend.8 | |
||
Assertion | ablsimpg1gend | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsimpg1gend.1 | |
|
2 | ablsimpg1gend.2 | |
|
3 | ablsimpg1gend.3 | |
|
4 | ablsimpg1gend.4 | |
|
5 | ablsimpg1gend.5 | |
|
6 | ablsimpg1gend.6 | |
|
7 | ablsimpg1gend.7 | |
|
8 | ablsimpg1gend.8 | |
|
9 | eqid | |
|
10 | 5 | simpggrpd | |
11 | 1 3 9 10 6 | cycsubgcld | |
12 | 1 3 9 6 | cycsubggend | |
13 | 1 2 4 5 11 12 7 | ablsimpnosubgd | |
14 | 8 13 | eleqtrrd | |
15 | 9 14 | elrnmpt2d | |