Metamath Proof Explorer


Theorem ablsimpg1gend

Description: An abelian simple group is generated by any non-identity element. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses ablsimpg1gend.1 B=BaseG
ablsimpg1gend.2 0˙=0G
ablsimpg1gend.3 ·˙=G
ablsimpg1gend.4 φGAbel
ablsimpg1gend.5 φGSimpGrp
ablsimpg1gend.6 φAB
ablsimpg1gend.7 φ¬A=0˙
ablsimpg1gend.8 φCB
Assertion ablsimpg1gend φnC=n·˙A

Proof

Step Hyp Ref Expression
1 ablsimpg1gend.1 B=BaseG
2 ablsimpg1gend.2 0˙=0G
3 ablsimpg1gend.3 ·˙=G
4 ablsimpg1gend.4 φGAbel
5 ablsimpg1gend.5 φGSimpGrp
6 ablsimpg1gend.6 φAB
7 ablsimpg1gend.7 φ¬A=0˙
8 ablsimpg1gend.8 φCB
9 eqid nn·˙A=nn·˙A
10 5 simpggrpd φGGrp
11 1 3 9 10 6 cycsubgcld φrannn·˙ASubGrpG
12 1 3 9 6 cycsubggend φArannn·˙A
13 1 2 4 5 11 12 7 ablsimpnosubgd φrannn·˙A=B
14 8 13 eleqtrrd φCrannn·˙A
15 9 14 elrnmpt2d φnC=n·˙A