Description: A subgroup of an abelian simple group containing a nonidentity element is the whole group. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablsimpnosubgd.1 | |
|
ablsimpnosubgd.2 | |
||
ablsimpnosubgd.3 | |
||
ablsimpnosubgd.4 | |
||
ablsimpnosubgd.5 | |
||
ablsimpnosubgd.6 | |
||
ablsimpnosubgd.7 | |
||
Assertion | ablsimpnosubgd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsimpnosubgd.1 | |
|
2 | ablsimpnosubgd.2 | |
|
3 | ablsimpnosubgd.3 | |
|
4 | ablsimpnosubgd.4 | |
|
5 | ablsimpnosubgd.5 | |
|
6 | ablsimpnosubgd.6 | |
|
7 | ablsimpnosubgd.7 | |
|
8 | elsni | |
|
9 | 7 8 | nsyl | |
10 | eleq2 | |
|
11 | 6 10 | syl5ibcom | |
12 | 9 11 | mtod | |
13 | 12 | pm2.21d | |
14 | idd | |
|
15 | ablnsg | |
|
16 | 15 | eqcomd | |
17 | 3 16 | syl | |
18 | 5 17 | eleqtrd | |
19 | 1 2 4 18 | simpgnsgeqd | |
20 | 13 14 19 | mpjaod | |