Metamath Proof Explorer


Theorem ablsimpnosubgd

Description: A subgroup of an abelian simple group containing a nonidentity element is the whole group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses ablsimpnosubgd.1 B=BaseG
ablsimpnosubgd.2 0˙=0G
ablsimpnosubgd.3 φGAbel
ablsimpnosubgd.4 φGSimpGrp
ablsimpnosubgd.5 φSSubGrpG
ablsimpnosubgd.6 φAS
ablsimpnosubgd.7 φ¬A=0˙
Assertion ablsimpnosubgd φS=B

Proof

Step Hyp Ref Expression
1 ablsimpnosubgd.1 B=BaseG
2 ablsimpnosubgd.2 0˙=0G
3 ablsimpnosubgd.3 φGAbel
4 ablsimpnosubgd.4 φGSimpGrp
5 ablsimpnosubgd.5 φSSubGrpG
6 ablsimpnosubgd.6 φAS
7 ablsimpnosubgd.7 φ¬A=0˙
8 elsni A0˙A=0˙
9 7 8 nsyl φ¬A0˙
10 eleq2 S=0˙ASA0˙
11 6 10 syl5ibcom φS=0˙A0˙
12 9 11 mtod φ¬S=0˙
13 12 pm2.21d φS=0˙S=B
14 idd φS=BS=B
15 ablnsg GAbelNrmSGrpG=SubGrpG
16 15 eqcomd GAbelSubGrpG=NrmSGrpG
17 3 16 syl φSubGrpG=NrmSGrpG
18 5 17 eleqtrd φSNrmSGrpG
19 1 2 4 18 simpgnsgeqd φS=0˙S=B
20 13 14 19 mpjaod φS=B