Metamath Proof Explorer


Theorem ablsimpnosubgd

Description: A subgroup of an abelian simple group containing a nonidentity element is the whole group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses ablsimpnosubgd.1
|- B = ( Base ` G )
ablsimpnosubgd.2
|- .0. = ( 0g ` G )
ablsimpnosubgd.3
|- ( ph -> G e. Abel )
ablsimpnosubgd.4
|- ( ph -> G e. SimpGrp )
ablsimpnosubgd.5
|- ( ph -> S e. ( SubGrp ` G ) )
ablsimpnosubgd.6
|- ( ph -> A e. S )
ablsimpnosubgd.7
|- ( ph -> -. A = .0. )
Assertion ablsimpnosubgd
|- ( ph -> S = B )

Proof

Step Hyp Ref Expression
1 ablsimpnosubgd.1
 |-  B = ( Base ` G )
2 ablsimpnosubgd.2
 |-  .0. = ( 0g ` G )
3 ablsimpnosubgd.3
 |-  ( ph -> G e. Abel )
4 ablsimpnosubgd.4
 |-  ( ph -> G e. SimpGrp )
5 ablsimpnosubgd.5
 |-  ( ph -> S e. ( SubGrp ` G ) )
6 ablsimpnosubgd.6
 |-  ( ph -> A e. S )
7 ablsimpnosubgd.7
 |-  ( ph -> -. A = .0. )
8 elsni
 |-  ( A e. { .0. } -> A = .0. )
9 7 8 nsyl
 |-  ( ph -> -. A e. { .0. } )
10 eleq2
 |-  ( S = { .0. } -> ( A e. S <-> A e. { .0. } ) )
11 6 10 syl5ibcom
 |-  ( ph -> ( S = { .0. } -> A e. { .0. } ) )
12 9 11 mtod
 |-  ( ph -> -. S = { .0. } )
13 12 pm2.21d
 |-  ( ph -> ( S = { .0. } -> S = B ) )
14 idd
 |-  ( ph -> ( S = B -> S = B ) )
15 ablnsg
 |-  ( G e. Abel -> ( NrmSGrp ` G ) = ( SubGrp ` G ) )
16 15 eqcomd
 |-  ( G e. Abel -> ( SubGrp ` G ) = ( NrmSGrp ` G ) )
17 3 16 syl
 |-  ( ph -> ( SubGrp ` G ) = ( NrmSGrp ` G ) )
18 5 17 eleqtrd
 |-  ( ph -> S e. ( NrmSGrp ` G ) )
19 1 2 4 18 simpgnsgeqd
 |-  ( ph -> ( S = { .0. } \/ S = B ) )
20 13 14 19 mpjaod
 |-  ( ph -> S = B )