Description: A normal subgroup of a simple group is either the whole group or the trivial subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | simpgnsgeqd.1 | |- B = ( Base ` G ) |
|
simpgnsgeqd.2 | |- .0. = ( 0g ` G ) |
||
simpgnsgeqd.3 | |- ( ph -> G e. SimpGrp ) |
||
simpgnsgeqd.4 | |- ( ph -> A e. ( NrmSGrp ` G ) ) |
||
Assertion | simpgnsgeqd | |- ( ph -> ( A = { .0. } \/ A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpgnsgeqd.1 | |- B = ( Base ` G ) |
|
2 | simpgnsgeqd.2 | |- .0. = ( 0g ` G ) |
|
3 | simpgnsgeqd.3 | |- ( ph -> G e. SimpGrp ) |
|
4 | simpgnsgeqd.4 | |- ( ph -> A e. ( NrmSGrp ` G ) ) |
|
5 | 1 2 3 | simpgnsgd | |- ( ph -> ( NrmSGrp ` G ) = { { .0. } , B } ) |
6 | 4 5 | eleqtrd | |- ( ph -> A e. { { .0. } , B } ) |
7 | elpri | |- ( A e. { { .0. } , B } -> ( A = { .0. } \/ A = B ) ) |
|
8 | 6 7 | syl | |- ( ph -> ( A = { .0. } \/ A = B ) ) |