Metamath Proof Explorer


Theorem simpgnsgeqd

Description: A normal subgroup of a simple group is either the whole group or the trivial subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses simpgnsgeqd.1
|- B = ( Base ` G )
simpgnsgeqd.2
|- .0. = ( 0g ` G )
simpgnsgeqd.3
|- ( ph -> G e. SimpGrp )
simpgnsgeqd.4
|- ( ph -> A e. ( NrmSGrp ` G ) )
Assertion simpgnsgeqd
|- ( ph -> ( A = { .0. } \/ A = B ) )

Proof

Step Hyp Ref Expression
1 simpgnsgeqd.1
 |-  B = ( Base ` G )
2 simpgnsgeqd.2
 |-  .0. = ( 0g ` G )
3 simpgnsgeqd.3
 |-  ( ph -> G e. SimpGrp )
4 simpgnsgeqd.4
 |-  ( ph -> A e. ( NrmSGrp ` G ) )
5 1 2 3 simpgnsgd
 |-  ( ph -> ( NrmSGrp ` G ) = { { .0. } , B } )
6 4 5 eleqtrd
 |-  ( ph -> A e. { { .0. } , B } )
7 elpri
 |-  ( A e. { { .0. } , B } -> ( A = { .0. } \/ A = B ) )
8 6 7 syl
 |-  ( ph -> ( A = { .0. } \/ A = B ) )