Description: A normal subgroup of a simple group is either the whole group or the trivial subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | simpgnsgeqd.1 | |- B = ( Base ` G ) | |
| simpgnsgeqd.2 | |- .0. = ( 0g ` G ) | ||
| simpgnsgeqd.3 | |- ( ph -> G e. SimpGrp ) | ||
| simpgnsgeqd.4 | |- ( ph -> A e. ( NrmSGrp ` G ) ) | ||
| Assertion | simpgnsgeqd | |- ( ph -> ( A = { .0. } \/ A = B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpgnsgeqd.1 | |- B = ( Base ` G ) | |
| 2 | simpgnsgeqd.2 | |- .0. = ( 0g ` G ) | |
| 3 | simpgnsgeqd.3 | |- ( ph -> G e. SimpGrp ) | |
| 4 | simpgnsgeqd.4 | |- ( ph -> A e. ( NrmSGrp ` G ) ) | |
| 5 | 1 2 3 | simpgnsgd |  |-  ( ph -> ( NrmSGrp ` G ) = { { .0. } , B } ) | 
| 6 | 4 5 | eleqtrd |  |-  ( ph -> A e. { { .0. } , B } ) | 
| 7 | elpri |  |-  ( A e. { { .0. } , B } -> ( A = { .0. } \/ A = B ) ) | |
| 8 | 6 7 | syl |  |-  ( ph -> ( A = { .0. } \/ A = B ) ) |