| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpgnsgd.1 |
|- B = ( Base ` G ) |
| 2 |
|
simpgnsgd.2 |
|- .0. = ( 0g ` G ) |
| 3 |
|
simpgnsgd.3 |
|- ( ph -> G e. SimpGrp ) |
| 4 |
|
2onn |
|- 2o e. _om |
| 5 |
4
|
a1i |
|- ( ph -> 2o e. _om ) |
| 6 |
|
nnfi |
|- ( 2o e. _om -> 2o e. Fin ) |
| 7 |
5 6
|
syl |
|- ( ph -> 2o e. Fin ) |
| 8 |
|
simpg2nsg |
|- ( G e. SimpGrp -> ( NrmSGrp ` G ) ~~ 2o ) |
| 9 |
3 8
|
syl |
|- ( ph -> ( NrmSGrp ` G ) ~~ 2o ) |
| 10 |
|
enfii |
|- ( ( 2o e. Fin /\ ( NrmSGrp ` G ) ~~ 2o ) -> ( NrmSGrp ` G ) e. Fin ) |
| 11 |
7 9 10
|
syl2anc |
|- ( ph -> ( NrmSGrp ` G ) e. Fin ) |
| 12 |
3
|
simpggrpd |
|- ( ph -> G e. Grp ) |
| 13 |
1 2 12
|
0idnsgd |
|- ( ph -> { { .0. } , B } C_ ( NrmSGrp ` G ) ) |
| 14 |
|
snex |
|- { .0. } e. _V |
| 15 |
14
|
a1i |
|- ( ph -> { .0. } e. _V ) |
| 16 |
1
|
a1i |
|- ( ph -> B = ( Base ` G ) ) |
| 17 |
|
fvex |
|- ( Base ` G ) e. _V |
| 18 |
16 17
|
eqeltrdi |
|- ( ph -> B e. _V ) |
| 19 |
1 2 3
|
simpgntrivd |
|- ( ph -> -. B = { .0. } ) |
| 20 |
19
|
neqcomd |
|- ( ph -> -. { .0. } = B ) |
| 21 |
15 18 20
|
enpr2d |
|- ( ph -> { { .0. } , B } ~~ 2o ) |
| 22 |
21
|
ensymd |
|- ( ph -> 2o ~~ { { .0. } , B } ) |
| 23 |
|
entr |
|- ( ( ( NrmSGrp ` G ) ~~ 2o /\ 2o ~~ { { .0. } , B } ) -> ( NrmSGrp ` G ) ~~ { { .0. } , B } ) |
| 24 |
9 22 23
|
syl2anc |
|- ( ph -> ( NrmSGrp ` G ) ~~ { { .0. } , B } ) |
| 25 |
11 13 24
|
phpeqd |
|- ( ph -> ( NrmSGrp ` G ) = { { .0. } , B } ) |