Step |
Hyp |
Ref |
Expression |
1 |
|
simpgnsgd.1 |
|- B = ( Base ` G ) |
2 |
|
simpgnsgd.2 |
|- .0. = ( 0g ` G ) |
3 |
|
simpgnsgd.3 |
|- ( ph -> G e. SimpGrp ) |
4 |
|
2onn |
|- 2o e. _om |
5 |
4
|
a1i |
|- ( ph -> 2o e. _om ) |
6 |
|
nnfi |
|- ( 2o e. _om -> 2o e. Fin ) |
7 |
5 6
|
syl |
|- ( ph -> 2o e. Fin ) |
8 |
|
simpg2nsg |
|- ( G e. SimpGrp -> ( NrmSGrp ` G ) ~~ 2o ) |
9 |
3 8
|
syl |
|- ( ph -> ( NrmSGrp ` G ) ~~ 2o ) |
10 |
|
enfii |
|- ( ( 2o e. Fin /\ ( NrmSGrp ` G ) ~~ 2o ) -> ( NrmSGrp ` G ) e. Fin ) |
11 |
7 9 10
|
syl2anc |
|- ( ph -> ( NrmSGrp ` G ) e. Fin ) |
12 |
3
|
simpggrpd |
|- ( ph -> G e. Grp ) |
13 |
1 2 12
|
0idnsgd |
|- ( ph -> { { .0. } , B } C_ ( NrmSGrp ` G ) ) |
14 |
|
snex |
|- { .0. } e. _V |
15 |
14
|
a1i |
|- ( ph -> { .0. } e. _V ) |
16 |
1
|
a1i |
|- ( ph -> B = ( Base ` G ) ) |
17 |
|
fvex |
|- ( Base ` G ) e. _V |
18 |
16 17
|
eqeltrdi |
|- ( ph -> B e. _V ) |
19 |
1 2 3
|
simpgntrivd |
|- ( ph -> -. B = { .0. } ) |
20 |
19
|
neqcomd |
|- ( ph -> -. { .0. } = B ) |
21 |
15 18 20
|
enpr2d |
|- ( ph -> { { .0. } , B } ~~ 2o ) |
22 |
21
|
ensymd |
|- ( ph -> 2o ~~ { { .0. } , B } ) |
23 |
|
entr |
|- ( ( ( NrmSGrp ` G ) ~~ 2o /\ 2o ~~ { { .0. } , B } ) -> ( NrmSGrp ` G ) ~~ { { .0. } , B } ) |
24 |
9 22 23
|
syl2anc |
|- ( ph -> ( NrmSGrp ` G ) ~~ { { .0. } , B } ) |
25 |
11 13 24
|
phpeqd |
|- ( ph -> ( NrmSGrp ` G ) = { { .0. } , B } ) |