Metamath Proof Explorer


Theorem simpgnsgd

Description: The only normal subgroups of a simple group are the group itself and the trivial group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses simpgnsgd.1
|- B = ( Base ` G )
simpgnsgd.2
|- .0. = ( 0g ` G )
simpgnsgd.3
|- ( ph -> G e. SimpGrp )
Assertion simpgnsgd
|- ( ph -> ( NrmSGrp ` G ) = { { .0. } , B } )

Proof

Step Hyp Ref Expression
1 simpgnsgd.1
 |-  B = ( Base ` G )
2 simpgnsgd.2
 |-  .0. = ( 0g ` G )
3 simpgnsgd.3
 |-  ( ph -> G e. SimpGrp )
4 2onn
 |-  2o e. _om
5 4 a1i
 |-  ( ph -> 2o e. _om )
6 nnfi
 |-  ( 2o e. _om -> 2o e. Fin )
7 5 6 syl
 |-  ( ph -> 2o e. Fin )
8 simpg2nsg
 |-  ( G e. SimpGrp -> ( NrmSGrp ` G ) ~~ 2o )
9 3 8 syl
 |-  ( ph -> ( NrmSGrp ` G ) ~~ 2o )
10 enfii
 |-  ( ( 2o e. Fin /\ ( NrmSGrp ` G ) ~~ 2o ) -> ( NrmSGrp ` G ) e. Fin )
11 7 9 10 syl2anc
 |-  ( ph -> ( NrmSGrp ` G ) e. Fin )
12 3 simpggrpd
 |-  ( ph -> G e. Grp )
13 1 2 12 0idnsgd
 |-  ( ph -> { { .0. } , B } C_ ( NrmSGrp ` G ) )
14 snex
 |-  { .0. } e. _V
15 14 a1i
 |-  ( ph -> { .0. } e. _V )
16 1 a1i
 |-  ( ph -> B = ( Base ` G ) )
17 fvex
 |-  ( Base ` G ) e. _V
18 16 17 eqeltrdi
 |-  ( ph -> B e. _V )
19 1 2 3 simpgntrivd
 |-  ( ph -> -. B = { .0. } )
20 19 neqcomd
 |-  ( ph -> -. { .0. } = B )
21 15 18 20 enpr2d
 |-  ( ph -> { { .0. } , B } ~~ 2o )
22 21 ensymd
 |-  ( ph -> 2o ~~ { { .0. } , B } )
23 entr
 |-  ( ( ( NrmSGrp ` G ) ~~ 2o /\ 2o ~~ { { .0. } , B } ) -> ( NrmSGrp ` G ) ~~ { { .0. } , B } )
24 9 22 23 syl2anc
 |-  ( ph -> ( NrmSGrp ` G ) ~~ { { .0. } , B } )
25 11 13 24 phpeqd
 |-  ( ph -> ( NrmSGrp ` G ) = { { .0. } , B } )