Step |
Hyp |
Ref |
Expression |
1 |
|
simpgnsgd.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
simpgnsgd.2 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
simpgnsgd.3 |
⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) |
4 |
|
2onn |
⊢ 2o ∈ ω |
5 |
4
|
a1i |
⊢ ( 𝜑 → 2o ∈ ω ) |
6 |
|
nnfi |
⊢ ( 2o ∈ ω → 2o ∈ Fin ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → 2o ∈ Fin ) |
8 |
|
simpg2nsg |
⊢ ( 𝐺 ∈ SimpGrp → ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) |
10 |
|
enfii |
⊢ ( ( 2o ∈ Fin ∧ ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) → ( NrmSGrp ‘ 𝐺 ) ∈ Fin ) |
11 |
7 9 10
|
syl2anc |
⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ∈ Fin ) |
12 |
3
|
simpggrpd |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
13 |
1 2 12
|
0idnsgd |
⊢ ( 𝜑 → { { 0 } , 𝐵 } ⊆ ( NrmSGrp ‘ 𝐺 ) ) |
14 |
|
snex |
⊢ { 0 } ∈ V |
15 |
14
|
a1i |
⊢ ( 𝜑 → { 0 } ∈ V ) |
16 |
1
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
17 |
|
fvex |
⊢ ( Base ‘ 𝐺 ) ∈ V |
18 |
16 17
|
eqeltrdi |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
19 |
1 2 3
|
simpgntrivd |
⊢ ( 𝜑 → ¬ 𝐵 = { 0 } ) |
20 |
19
|
neqcomd |
⊢ ( 𝜑 → ¬ { 0 } = 𝐵 ) |
21 |
15 18 20
|
enpr2d |
⊢ ( 𝜑 → { { 0 } , 𝐵 } ≈ 2o ) |
22 |
21
|
ensymd |
⊢ ( 𝜑 → 2o ≈ { { 0 } , 𝐵 } ) |
23 |
|
entr |
⊢ ( ( ( NrmSGrp ‘ 𝐺 ) ≈ 2o ∧ 2o ≈ { { 0 } , 𝐵 } ) → ( NrmSGrp ‘ 𝐺 ) ≈ { { 0 } , 𝐵 } ) |
24 |
9 22 23
|
syl2anc |
⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ≈ { { 0 } , 𝐵 } ) |
25 |
11 13 24
|
phpeqd |
⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) = { { 0 } , 𝐵 } ) |