| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpgnsgd.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | simpgnsgd.2 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | simpgnsgd.3 | ⊢ ( 𝜑  →  𝐺  ∈  SimpGrp ) | 
						
							| 4 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →  2o  ∈  ω ) | 
						
							| 6 |  | nnfi | ⊢ ( 2o  ∈  ω  →  2o  ∈  Fin ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  2o  ∈  Fin ) | 
						
							| 8 |  | simpg2nsg | ⊢ ( 𝐺  ∈  SimpGrp  →  ( NrmSGrp ‘ 𝐺 )  ≈  2o ) | 
						
							| 9 | 3 8 | syl | ⊢ ( 𝜑  →  ( NrmSGrp ‘ 𝐺 )  ≈  2o ) | 
						
							| 10 |  | enfii | ⊢ ( ( 2o  ∈  Fin  ∧  ( NrmSGrp ‘ 𝐺 )  ≈  2o )  →  ( NrmSGrp ‘ 𝐺 )  ∈  Fin ) | 
						
							| 11 | 7 9 10 | syl2anc | ⊢ ( 𝜑  →  ( NrmSGrp ‘ 𝐺 )  ∈  Fin ) | 
						
							| 12 | 3 | simpggrpd | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 13 | 1 2 12 | 0idnsgd | ⊢ ( 𝜑  →  { {  0  } ,  𝐵 }  ⊆  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 14 |  | snex | ⊢ {  0  }  ∈  V | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  {  0  }  ∈  V ) | 
						
							| 16 | 1 | a1i | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐺 ) ) | 
						
							| 17 |  | fvex | ⊢ ( Base ‘ 𝐺 )  ∈  V | 
						
							| 18 | 16 17 | eqeltrdi | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 19 | 1 2 3 | simpgntrivd | ⊢ ( 𝜑  →  ¬  𝐵  =  {  0  } ) | 
						
							| 20 | 19 | neqcomd | ⊢ ( 𝜑  →  ¬  {  0  }  =  𝐵 ) | 
						
							| 21 | 15 18 20 | enpr2d | ⊢ ( 𝜑  →  { {  0  } ,  𝐵 }  ≈  2o ) | 
						
							| 22 | 21 | ensymd | ⊢ ( 𝜑  →  2o  ≈  { {  0  } ,  𝐵 } ) | 
						
							| 23 |  | entr | ⊢ ( ( ( NrmSGrp ‘ 𝐺 )  ≈  2o  ∧  2o  ≈  { {  0  } ,  𝐵 } )  →  ( NrmSGrp ‘ 𝐺 )  ≈  { {  0  } ,  𝐵 } ) | 
						
							| 24 | 9 22 23 | syl2anc | ⊢ ( 𝜑  →  ( NrmSGrp ‘ 𝐺 )  ≈  { {  0  } ,  𝐵 } ) | 
						
							| 25 | 11 13 24 | phpeqd | ⊢ ( 𝜑  →  ( NrmSGrp ‘ 𝐺 )  =  { {  0  } ,  𝐵 } ) |