Metamath Proof Explorer


Theorem simpgnsgd

Description: The only normal subgroups of a simple group are the group itself and the trivial group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses simpgnsgd.1 𝐵 = ( Base ‘ 𝐺 )
simpgnsgd.2 0 = ( 0g𝐺 )
simpgnsgd.3 ( 𝜑𝐺 ∈ SimpGrp )
Assertion simpgnsgd ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) = { { 0 } , 𝐵 } )

Proof

Step Hyp Ref Expression
1 simpgnsgd.1 𝐵 = ( Base ‘ 𝐺 )
2 simpgnsgd.2 0 = ( 0g𝐺 )
3 simpgnsgd.3 ( 𝜑𝐺 ∈ SimpGrp )
4 2onn 2o ∈ ω
5 4 a1i ( 𝜑 → 2o ∈ ω )
6 nnfi ( 2o ∈ ω → 2o ∈ Fin )
7 5 6 syl ( 𝜑 → 2o ∈ Fin )
8 simpg2nsg ( 𝐺 ∈ SimpGrp → ( NrmSGrp ‘ 𝐺 ) ≈ 2o )
9 3 8 syl ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ≈ 2o )
10 enfii ( ( 2o ∈ Fin ∧ ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) → ( NrmSGrp ‘ 𝐺 ) ∈ Fin )
11 7 9 10 syl2anc ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ∈ Fin )
12 3 simpggrpd ( 𝜑𝐺 ∈ Grp )
13 1 2 12 0idnsgd ( 𝜑 → { { 0 } , 𝐵 } ⊆ ( NrmSGrp ‘ 𝐺 ) )
14 snex { 0 } ∈ V
15 14 a1i ( 𝜑 → { 0 } ∈ V )
16 1 a1i ( 𝜑𝐵 = ( Base ‘ 𝐺 ) )
17 fvex ( Base ‘ 𝐺 ) ∈ V
18 16 17 eqeltrdi ( 𝜑𝐵 ∈ V )
19 1 2 3 simpgntrivd ( 𝜑 → ¬ 𝐵 = { 0 } )
20 19 neqcomd ( 𝜑 → ¬ { 0 } = 𝐵 )
21 15 18 20 enpr2d ( 𝜑 → { { 0 } , 𝐵 } ≈ 2o )
22 21 ensymd ( 𝜑 → 2o ≈ { { 0 } , 𝐵 } )
23 entr ( ( ( NrmSGrp ‘ 𝐺 ) ≈ 2o ∧ 2o ≈ { { 0 } , 𝐵 } ) → ( NrmSGrp ‘ 𝐺 ) ≈ { { 0 } , 𝐵 } )
24 9 22 23 syl2anc ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ≈ { { 0 } , 𝐵 } )
25 11 13 24 phpeqd ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) = { { 0 } , 𝐵 } )