Description: A normal subgroup of a simple group is either the whole group or the trivial subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | simpgnsgeqd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
simpgnsgeqd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
simpgnsgeqd.3 | ⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) | ||
simpgnsgeqd.4 | ⊢ ( 𝜑 → 𝐴 ∈ ( NrmSGrp ‘ 𝐺 ) ) | ||
Assertion | simpgnsgeqd | ⊢ ( 𝜑 → ( 𝐴 = { 0 } ∨ 𝐴 = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpgnsgeqd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
2 | simpgnsgeqd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
3 | simpgnsgeqd.3 | ⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) | |
4 | simpgnsgeqd.4 | ⊢ ( 𝜑 → 𝐴 ∈ ( NrmSGrp ‘ 𝐺 ) ) | |
5 | 1 2 3 | simpgnsgd | ⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) = { { 0 } , 𝐵 } ) |
6 | 4 5 | eleqtrd | ⊢ ( 𝜑 → 𝐴 ∈ { { 0 } , 𝐵 } ) |
7 | elpri | ⊢ ( 𝐴 ∈ { { 0 } , 𝐵 } → ( 𝐴 = { 0 } ∨ 𝐴 = 𝐵 ) ) | |
8 | 6 7 | syl | ⊢ ( 𝜑 → ( 𝐴 = { 0 } ∨ 𝐴 = 𝐵 ) ) |