Metamath Proof Explorer


Theorem simpgnsgeqd

Description: A normal subgroup of a simple group is either the whole group or the trivial subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses simpgnsgeqd.1 𝐵 = ( Base ‘ 𝐺 )
simpgnsgeqd.2 0 = ( 0g𝐺 )
simpgnsgeqd.3 ( 𝜑𝐺 ∈ SimpGrp )
simpgnsgeqd.4 ( 𝜑𝐴 ∈ ( NrmSGrp ‘ 𝐺 ) )
Assertion simpgnsgeqd ( 𝜑 → ( 𝐴 = { 0 } ∨ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 simpgnsgeqd.1 𝐵 = ( Base ‘ 𝐺 )
2 simpgnsgeqd.2 0 = ( 0g𝐺 )
3 simpgnsgeqd.3 ( 𝜑𝐺 ∈ SimpGrp )
4 simpgnsgeqd.4 ( 𝜑𝐴 ∈ ( NrmSGrp ‘ 𝐺 ) )
5 1 2 3 simpgnsgd ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) = { { 0 } , 𝐵 } )
6 4 5 eleqtrd ( 𝜑𝐴 ∈ { { 0 } , 𝐵 } )
7 elpri ( 𝐴 ∈ { { 0 } , 𝐵 } → ( 𝐴 = { 0 } ∨ 𝐴 = 𝐵 ) )
8 6 7 syl ( 𝜑 → ( 𝐴 = { 0 } ∨ 𝐴 = 𝐵 ) )