Metamath Proof Explorer


Theorem 2nsgsimpgd

Description: If any normal subgroup of a nontrivial group is either the trivial subgroup or the whole group, the group is simple. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses 2nsgsimpgd.1 𝐵 = ( Base ‘ 𝐺 )
2nsgsimpgd.2 0 = ( 0g𝐺 )
2nsgsimpgd.3 ( 𝜑𝐺 ∈ Grp )
2nsgsimpgd.4 ( 𝜑 → ¬ { 0 } = 𝐵 )
2nsgsimpgd.5 ( ( 𝜑𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( 𝑥 = { 0 } ∨ 𝑥 = 𝐵 ) )
Assertion 2nsgsimpgd ( 𝜑𝐺 ∈ SimpGrp )

Proof

Step Hyp Ref Expression
1 2nsgsimpgd.1 𝐵 = ( Base ‘ 𝐺 )
2 2nsgsimpgd.2 0 = ( 0g𝐺 )
3 2nsgsimpgd.3 ( 𝜑𝐺 ∈ Grp )
4 2nsgsimpgd.4 ( 𝜑 → ¬ { 0 } = 𝐵 )
5 2nsgsimpgd.5 ( ( 𝜑𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( 𝑥 = { 0 } ∨ 𝑥 = 𝐵 ) )
6 elprg ( 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 𝑥 ∈ { { 0 } , 𝐵 } ↔ ( 𝑥 = { 0 } ∨ 𝑥 = 𝐵 ) ) )
7 6 adantl ( ( 𝜑𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ { { 0 } , 𝐵 } ↔ ( 𝑥 = { 0 } ∨ 𝑥 = 𝐵 ) ) )
8 5 7 mpbird ( ( 𝜑𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝑥 ∈ { { 0 } , 𝐵 } )
9 simpr ( ( 𝜑𝑥 = { 0 } ) → 𝑥 = { 0 } )
10 2 0nsg ( 𝐺 ∈ Grp → { 0 } ∈ ( NrmSGrp ‘ 𝐺 ) )
11 3 10 syl ( 𝜑 → { 0 } ∈ ( NrmSGrp ‘ 𝐺 ) )
12 11 adantr ( ( 𝜑𝑥 = { 0 } ) → { 0 } ∈ ( NrmSGrp ‘ 𝐺 ) )
13 9 12 eqeltrd ( ( 𝜑𝑥 = { 0 } ) → 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) )
14 13 adantlr ( ( ( 𝜑𝑥 ∈ { { 0 } , 𝐵 } ) ∧ 𝑥 = { 0 } ) → 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) )
15 simpr ( ( 𝜑𝑥 = 𝐵 ) → 𝑥 = 𝐵 )
16 1 nsgid ( 𝐺 ∈ Grp → 𝐵 ∈ ( NrmSGrp ‘ 𝐺 ) )
17 3 16 syl ( 𝜑𝐵 ∈ ( NrmSGrp ‘ 𝐺 ) )
18 17 adantr ( ( 𝜑𝑥 = 𝐵 ) → 𝐵 ∈ ( NrmSGrp ‘ 𝐺 ) )
19 15 18 eqeltrd ( ( 𝜑𝑥 = 𝐵 ) → 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) )
20 19 adantlr ( ( ( 𝜑𝑥 ∈ { { 0 } , 𝐵 } ) ∧ 𝑥 = 𝐵 ) → 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) )
21 elpri ( 𝑥 ∈ { { 0 } , 𝐵 } → ( 𝑥 = { 0 } ∨ 𝑥 = 𝐵 ) )
22 21 adantl ( ( 𝜑𝑥 ∈ { { 0 } , 𝐵 } ) → ( 𝑥 = { 0 } ∨ 𝑥 = 𝐵 ) )
23 14 20 22 mpjaodan ( ( 𝜑𝑥 ∈ { { 0 } , 𝐵 } ) → 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) )
24 8 23 impbida ( 𝜑 → ( 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ 𝑥 ∈ { { 0 } , 𝐵 } ) )
25 24 eqrdv ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) = { { 0 } , 𝐵 } )
26 snex { 0 } ∈ V
27 26 a1i ( 𝜑 → { 0 } ∈ V )
28 1 fvexi 𝐵 ∈ V
29 28 a1i ( 𝜑𝐵 ∈ V )
30 27 29 4 enpr2d ( 𝜑 → { { 0 } , 𝐵 } ≈ 2o )
31 25 30 eqbrtrd ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ≈ 2o )
32 3 31 issimpgd ( 𝜑𝐺 ∈ SimpGrp )