| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nsgsimpgd.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | 2nsgsimpgd.2 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | 2nsgsimpgd.3 | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 4 |  | 2nsgsimpgd.4 | ⊢ ( 𝜑  →  ¬  {  0  }  =  𝐵 ) | 
						
							| 5 |  | 2nsgsimpgd.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( NrmSGrp ‘ 𝐺 ) )  →  ( 𝑥  =  {  0  }  ∨  𝑥  =  𝐵 ) ) | 
						
							| 6 |  | elprg | ⊢ ( 𝑥  ∈  ( NrmSGrp ‘ 𝐺 )  →  ( 𝑥  ∈  { {  0  } ,  𝐵 }  ↔  ( 𝑥  =  {  0  }  ∨  𝑥  =  𝐵 ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( NrmSGrp ‘ 𝐺 ) )  →  ( 𝑥  ∈  { {  0  } ,  𝐵 }  ↔  ( 𝑥  =  {  0  }  ∨  𝑥  =  𝐵 ) ) ) | 
						
							| 8 | 5 7 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( NrmSGrp ‘ 𝐺 ) )  →  𝑥  ∈  { {  0  } ,  𝐵 } ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  =  {  0  } )  →  𝑥  =  {  0  } ) | 
						
							| 10 | 2 | 0nsg | ⊢ ( 𝐺  ∈  Grp  →  {  0  }  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 11 | 3 10 | syl | ⊢ ( 𝜑  →  {  0  }  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  =  {  0  } )  →  {  0  }  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 13 | 9 12 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  =  {  0  } )  →  𝑥  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 14 | 13 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { {  0  } ,  𝐵 } )  ∧  𝑥  =  {  0  } )  →  𝑥  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐵 )  →  𝑥  =  𝐵 ) | 
						
							| 16 | 1 | nsgid | ⊢ ( 𝐺  ∈  Grp  →  𝐵  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 17 | 3 16 | syl | ⊢ ( 𝜑  →  𝐵  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐵 )  →  𝐵  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 19 | 15 18 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐵 )  →  𝑥  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 20 | 19 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { {  0  } ,  𝐵 } )  ∧  𝑥  =  𝐵 )  →  𝑥  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 21 |  | elpri | ⊢ ( 𝑥  ∈  { {  0  } ,  𝐵 }  →  ( 𝑥  =  {  0  }  ∨  𝑥  =  𝐵 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { {  0  } ,  𝐵 } )  →  ( 𝑥  =  {  0  }  ∨  𝑥  =  𝐵 ) ) | 
						
							| 23 | 14 20 22 | mpjaodan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { {  0  } ,  𝐵 } )  →  𝑥  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 24 | 8 23 | impbida | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( NrmSGrp ‘ 𝐺 )  ↔  𝑥  ∈  { {  0  } ,  𝐵 } ) ) | 
						
							| 25 | 24 | eqrdv | ⊢ ( 𝜑  →  ( NrmSGrp ‘ 𝐺 )  =  { {  0  } ,  𝐵 } ) | 
						
							| 26 |  | snex | ⊢ {  0  }  ∈  V | 
						
							| 27 | 26 | a1i | ⊢ ( 𝜑  →  {  0  }  ∈  V ) | 
						
							| 28 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 29 | 28 | a1i | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 30 | 27 29 4 | enpr2d | ⊢ ( 𝜑  →  { {  0  } ,  𝐵 }  ≈  2o ) | 
						
							| 31 | 25 30 | eqbrtrd | ⊢ ( 𝜑  →  ( NrmSGrp ‘ 𝐺 )  ≈  2o ) | 
						
							| 32 | 3 31 | issimpgd | ⊢ ( 𝜑  →  𝐺  ∈  SimpGrp ) |