| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpgnsgbid.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | simpgnsgbid.2 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | simpgnsgbid.3 | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 4 |  | simpgnsgbid.4 | ⊢ ( 𝜑  →  ¬  {  0  }  =  𝐵 ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐺  ∈  SimpGrp )  →  𝐺  ∈  SimpGrp ) | 
						
							| 6 | 1 2 5 | simpgnsgd | ⊢ ( ( 𝜑  ∧  𝐺  ∈  SimpGrp )  →  ( NrmSGrp ‘ 𝐺 )  =  { {  0  } ,  𝐵 } ) | 
						
							| 7 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( NrmSGrp ‘ 𝐺 )  =  { {  0  } ,  𝐵 } )  →  𝐺  ∈  Grp ) | 
						
							| 8 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( NrmSGrp ‘ 𝐺 )  =  { {  0  } ,  𝐵 } )  →  ¬  {  0  }  =  𝐵 ) | 
						
							| 9 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( NrmSGrp ‘ 𝐺 )  =  { {  0  } ,  𝐵 } )  ∧  𝑥  ∈  ( NrmSGrp ‘ 𝐺 ) )  →  𝑥  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 10 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ( NrmSGrp ‘ 𝐺 )  =  { {  0  } ,  𝐵 } )  ∧  𝑥  ∈  ( NrmSGrp ‘ 𝐺 ) )  →  ( NrmSGrp ‘ 𝐺 )  =  { {  0  } ,  𝐵 } ) | 
						
							| 11 | 9 10 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  ( NrmSGrp ‘ 𝐺 )  =  { {  0  } ,  𝐵 } )  ∧  𝑥  ∈  ( NrmSGrp ‘ 𝐺 ) )  →  𝑥  ∈  { {  0  } ,  𝐵 } ) | 
						
							| 12 |  | elpri | ⊢ ( 𝑥  ∈  { {  0  } ,  𝐵 }  →  ( 𝑥  =  {  0  }  ∨  𝑥  =  𝐵 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( ( 𝜑  ∧  ( NrmSGrp ‘ 𝐺 )  =  { {  0  } ,  𝐵 } )  ∧  𝑥  ∈  ( NrmSGrp ‘ 𝐺 ) )  →  ( 𝑥  =  {  0  }  ∨  𝑥  =  𝐵 ) ) | 
						
							| 14 | 1 2 7 8 13 | 2nsgsimpgd | ⊢ ( ( 𝜑  ∧  ( NrmSGrp ‘ 𝐺 )  =  { {  0  } ,  𝐵 } )  →  𝐺  ∈  SimpGrp ) | 
						
							| 15 | 6 14 | impbida | ⊢ ( 𝜑  →  ( 𝐺  ∈  SimpGrp  ↔  ( NrmSGrp ‘ 𝐺 )  =  { {  0  } ,  𝐵 } ) ) |