Metamath Proof Explorer


Theorem simpgnsgbid

Description: A nontrivial group is simple if and only if its normal subgroups are exactly the group itself and the trivial subgroup. (Contributed by Rohan Ridenour, 4-Aug-2023)

Ref Expression
Hypotheses simpgnsgbid.1
|- B = ( Base ` G )
simpgnsgbid.2
|- .0. = ( 0g ` G )
simpgnsgbid.3
|- ( ph -> G e. Grp )
simpgnsgbid.4
|- ( ph -> -. { .0. } = B )
Assertion simpgnsgbid
|- ( ph -> ( G e. SimpGrp <-> ( NrmSGrp ` G ) = { { .0. } , B } ) )

Proof

Step Hyp Ref Expression
1 simpgnsgbid.1
 |-  B = ( Base ` G )
2 simpgnsgbid.2
 |-  .0. = ( 0g ` G )
3 simpgnsgbid.3
 |-  ( ph -> G e. Grp )
4 simpgnsgbid.4
 |-  ( ph -> -. { .0. } = B )
5 simpr
 |-  ( ( ph /\ G e. SimpGrp ) -> G e. SimpGrp )
6 1 2 5 simpgnsgd
 |-  ( ( ph /\ G e. SimpGrp ) -> ( NrmSGrp ` G ) = { { .0. } , B } )
7 3 adantr
 |-  ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) -> G e. Grp )
8 4 adantr
 |-  ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) -> -. { .0. } = B )
9 simpr
 |-  ( ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) /\ x e. ( NrmSGrp ` G ) ) -> x e. ( NrmSGrp ` G ) )
10 simplr
 |-  ( ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) /\ x e. ( NrmSGrp ` G ) ) -> ( NrmSGrp ` G ) = { { .0. } , B } )
11 9 10 eleqtrd
 |-  ( ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) /\ x e. ( NrmSGrp ` G ) ) -> x e. { { .0. } , B } )
12 elpri
 |-  ( x e. { { .0. } , B } -> ( x = { .0. } \/ x = B ) )
13 11 12 syl
 |-  ( ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) /\ x e. ( NrmSGrp ` G ) ) -> ( x = { .0. } \/ x = B ) )
14 1 2 7 8 13 2nsgsimpgd
 |-  ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) -> G e. SimpGrp )
15 6 14 impbida
 |-  ( ph -> ( G e. SimpGrp <-> ( NrmSGrp ` G ) = { { .0. } , B } ) )