Step |
Hyp |
Ref |
Expression |
1 |
|
simpgnsgbid.1 |
|- B = ( Base ` G ) |
2 |
|
simpgnsgbid.2 |
|- .0. = ( 0g ` G ) |
3 |
|
simpgnsgbid.3 |
|- ( ph -> G e. Grp ) |
4 |
|
simpgnsgbid.4 |
|- ( ph -> -. { .0. } = B ) |
5 |
|
simpr |
|- ( ( ph /\ G e. SimpGrp ) -> G e. SimpGrp ) |
6 |
1 2 5
|
simpgnsgd |
|- ( ( ph /\ G e. SimpGrp ) -> ( NrmSGrp ` G ) = { { .0. } , B } ) |
7 |
3
|
adantr |
|- ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) -> G e. Grp ) |
8 |
4
|
adantr |
|- ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) -> -. { .0. } = B ) |
9 |
|
simpr |
|- ( ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) /\ x e. ( NrmSGrp ` G ) ) -> x e. ( NrmSGrp ` G ) ) |
10 |
|
simplr |
|- ( ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) /\ x e. ( NrmSGrp ` G ) ) -> ( NrmSGrp ` G ) = { { .0. } , B } ) |
11 |
9 10
|
eleqtrd |
|- ( ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) /\ x e. ( NrmSGrp ` G ) ) -> x e. { { .0. } , B } ) |
12 |
|
elpri |
|- ( x e. { { .0. } , B } -> ( x = { .0. } \/ x = B ) ) |
13 |
11 12
|
syl |
|- ( ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) /\ x e. ( NrmSGrp ` G ) ) -> ( x = { .0. } \/ x = B ) ) |
14 |
1 2 7 8 13
|
2nsgsimpgd |
|- ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) -> G e. SimpGrp ) |
15 |
6 14
|
impbida |
|- ( ph -> ( G e. SimpGrp <-> ( NrmSGrp ` G ) = { { .0. } , B } ) ) |