| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpgnsgbid.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | simpgnsgbid.2 |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | simpgnsgbid.3 |  |-  ( ph -> G e. Grp ) | 
						
							| 4 |  | simpgnsgbid.4 |  |-  ( ph -> -. { .0. } = B ) | 
						
							| 5 |  | simpr |  |-  ( ( ph /\ G e. SimpGrp ) -> G e. SimpGrp ) | 
						
							| 6 | 1 2 5 | simpgnsgd |  |-  ( ( ph /\ G e. SimpGrp ) -> ( NrmSGrp ` G ) = { { .0. } , B } ) | 
						
							| 7 | 3 | adantr |  |-  ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) -> G e. Grp ) | 
						
							| 8 | 4 | adantr |  |-  ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) -> -. { .0. } = B ) | 
						
							| 9 |  | simpr |  |-  ( ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) /\ x e. ( NrmSGrp ` G ) ) -> x e. ( NrmSGrp ` G ) ) | 
						
							| 10 |  | simplr |  |-  ( ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) /\ x e. ( NrmSGrp ` G ) ) -> ( NrmSGrp ` G ) = { { .0. } , B } ) | 
						
							| 11 | 9 10 | eleqtrd |  |-  ( ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) /\ x e. ( NrmSGrp ` G ) ) -> x e. { { .0. } , B } ) | 
						
							| 12 |  | elpri |  |-  ( x e. { { .0. } , B } -> ( x = { .0. } \/ x = B ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) /\ x e. ( NrmSGrp ` G ) ) -> ( x = { .0. } \/ x = B ) ) | 
						
							| 14 | 1 2 7 8 13 | 2nsgsimpgd |  |-  ( ( ph /\ ( NrmSGrp ` G ) = { { .0. } , B } ) -> G e. SimpGrp ) | 
						
							| 15 | 6 14 | impbida |  |-  ( ph -> ( G e. SimpGrp <-> ( NrmSGrp ` G ) = { { .0. } , B } ) ) |