Step |
Hyp |
Ref |
Expression |
1 |
|
2nsgsimpgd.1 |
|- B = ( Base ` G ) |
2 |
|
2nsgsimpgd.2 |
|- .0. = ( 0g ` G ) |
3 |
|
2nsgsimpgd.3 |
|- ( ph -> G e. Grp ) |
4 |
|
2nsgsimpgd.4 |
|- ( ph -> -. { .0. } = B ) |
5 |
|
2nsgsimpgd.5 |
|- ( ( ph /\ x e. ( NrmSGrp ` G ) ) -> ( x = { .0. } \/ x = B ) ) |
6 |
|
elprg |
|- ( x e. ( NrmSGrp ` G ) -> ( x e. { { .0. } , B } <-> ( x = { .0. } \/ x = B ) ) ) |
7 |
6
|
adantl |
|- ( ( ph /\ x e. ( NrmSGrp ` G ) ) -> ( x e. { { .0. } , B } <-> ( x = { .0. } \/ x = B ) ) ) |
8 |
5 7
|
mpbird |
|- ( ( ph /\ x e. ( NrmSGrp ` G ) ) -> x e. { { .0. } , B } ) |
9 |
|
simpr |
|- ( ( ph /\ x = { .0. } ) -> x = { .0. } ) |
10 |
2
|
0nsg |
|- ( G e. Grp -> { .0. } e. ( NrmSGrp ` G ) ) |
11 |
3 10
|
syl |
|- ( ph -> { .0. } e. ( NrmSGrp ` G ) ) |
12 |
11
|
adantr |
|- ( ( ph /\ x = { .0. } ) -> { .0. } e. ( NrmSGrp ` G ) ) |
13 |
9 12
|
eqeltrd |
|- ( ( ph /\ x = { .0. } ) -> x e. ( NrmSGrp ` G ) ) |
14 |
13
|
adantlr |
|- ( ( ( ph /\ x e. { { .0. } , B } ) /\ x = { .0. } ) -> x e. ( NrmSGrp ` G ) ) |
15 |
|
simpr |
|- ( ( ph /\ x = B ) -> x = B ) |
16 |
1
|
nsgid |
|- ( G e. Grp -> B e. ( NrmSGrp ` G ) ) |
17 |
3 16
|
syl |
|- ( ph -> B e. ( NrmSGrp ` G ) ) |
18 |
17
|
adantr |
|- ( ( ph /\ x = B ) -> B e. ( NrmSGrp ` G ) ) |
19 |
15 18
|
eqeltrd |
|- ( ( ph /\ x = B ) -> x e. ( NrmSGrp ` G ) ) |
20 |
19
|
adantlr |
|- ( ( ( ph /\ x e. { { .0. } , B } ) /\ x = B ) -> x e. ( NrmSGrp ` G ) ) |
21 |
|
elpri |
|- ( x e. { { .0. } , B } -> ( x = { .0. } \/ x = B ) ) |
22 |
21
|
adantl |
|- ( ( ph /\ x e. { { .0. } , B } ) -> ( x = { .0. } \/ x = B ) ) |
23 |
14 20 22
|
mpjaodan |
|- ( ( ph /\ x e. { { .0. } , B } ) -> x e. ( NrmSGrp ` G ) ) |
24 |
8 23
|
impbida |
|- ( ph -> ( x e. ( NrmSGrp ` G ) <-> x e. { { .0. } , B } ) ) |
25 |
24
|
eqrdv |
|- ( ph -> ( NrmSGrp ` G ) = { { .0. } , B } ) |
26 |
|
snex |
|- { .0. } e. _V |
27 |
26
|
a1i |
|- ( ph -> { .0. } e. _V ) |
28 |
1
|
fvexi |
|- B e. _V |
29 |
28
|
a1i |
|- ( ph -> B e. _V ) |
30 |
27 29 4
|
enpr2d |
|- ( ph -> { { .0. } , B } ~~ 2o ) |
31 |
25 30
|
eqbrtrd |
|- ( ph -> ( NrmSGrp ` G ) ~~ 2o ) |
32 |
3 31
|
issimpgd |
|- ( ph -> G e. SimpGrp ) |