| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2nsgsimpgd.1 |
|- B = ( Base ` G ) |
| 2 |
|
2nsgsimpgd.2 |
|- .0. = ( 0g ` G ) |
| 3 |
|
2nsgsimpgd.3 |
|- ( ph -> G e. Grp ) |
| 4 |
|
2nsgsimpgd.4 |
|- ( ph -> -. { .0. } = B ) |
| 5 |
|
2nsgsimpgd.5 |
|- ( ( ph /\ x e. ( NrmSGrp ` G ) ) -> ( x = { .0. } \/ x = B ) ) |
| 6 |
|
elprg |
|- ( x e. ( NrmSGrp ` G ) -> ( x e. { { .0. } , B } <-> ( x = { .0. } \/ x = B ) ) ) |
| 7 |
6
|
adantl |
|- ( ( ph /\ x e. ( NrmSGrp ` G ) ) -> ( x e. { { .0. } , B } <-> ( x = { .0. } \/ x = B ) ) ) |
| 8 |
5 7
|
mpbird |
|- ( ( ph /\ x e. ( NrmSGrp ` G ) ) -> x e. { { .0. } , B } ) |
| 9 |
|
simpr |
|- ( ( ph /\ x = { .0. } ) -> x = { .0. } ) |
| 10 |
2
|
0nsg |
|- ( G e. Grp -> { .0. } e. ( NrmSGrp ` G ) ) |
| 11 |
3 10
|
syl |
|- ( ph -> { .0. } e. ( NrmSGrp ` G ) ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ x = { .0. } ) -> { .0. } e. ( NrmSGrp ` G ) ) |
| 13 |
9 12
|
eqeltrd |
|- ( ( ph /\ x = { .0. } ) -> x e. ( NrmSGrp ` G ) ) |
| 14 |
13
|
adantlr |
|- ( ( ( ph /\ x e. { { .0. } , B } ) /\ x = { .0. } ) -> x e. ( NrmSGrp ` G ) ) |
| 15 |
|
simpr |
|- ( ( ph /\ x = B ) -> x = B ) |
| 16 |
1
|
nsgid |
|- ( G e. Grp -> B e. ( NrmSGrp ` G ) ) |
| 17 |
3 16
|
syl |
|- ( ph -> B e. ( NrmSGrp ` G ) ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ x = B ) -> B e. ( NrmSGrp ` G ) ) |
| 19 |
15 18
|
eqeltrd |
|- ( ( ph /\ x = B ) -> x e. ( NrmSGrp ` G ) ) |
| 20 |
19
|
adantlr |
|- ( ( ( ph /\ x e. { { .0. } , B } ) /\ x = B ) -> x e. ( NrmSGrp ` G ) ) |
| 21 |
|
elpri |
|- ( x e. { { .0. } , B } -> ( x = { .0. } \/ x = B ) ) |
| 22 |
21
|
adantl |
|- ( ( ph /\ x e. { { .0. } , B } ) -> ( x = { .0. } \/ x = B ) ) |
| 23 |
14 20 22
|
mpjaodan |
|- ( ( ph /\ x e. { { .0. } , B } ) -> x e. ( NrmSGrp ` G ) ) |
| 24 |
8 23
|
impbida |
|- ( ph -> ( x e. ( NrmSGrp ` G ) <-> x e. { { .0. } , B } ) ) |
| 25 |
24
|
eqrdv |
|- ( ph -> ( NrmSGrp ` G ) = { { .0. } , B } ) |
| 26 |
|
snex |
|- { .0. } e. _V |
| 27 |
26
|
a1i |
|- ( ph -> { .0. } e. _V ) |
| 28 |
1
|
fvexi |
|- B e. _V |
| 29 |
28
|
a1i |
|- ( ph -> B e. _V ) |
| 30 |
27 29 4
|
enpr2d |
|- ( ph -> { { .0. } , B } ~~ 2o ) |
| 31 |
25 30
|
eqbrtrd |
|- ( ph -> ( NrmSGrp ` G ) ~~ 2o ) |
| 32 |
3 31
|
issimpgd |
|- ( ph -> G e. SimpGrp ) |