| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nsgsimpgd.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | 2nsgsimpgd.2 |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | 2nsgsimpgd.3 |  |-  ( ph -> G e. Grp ) | 
						
							| 4 |  | 2nsgsimpgd.4 |  |-  ( ph -> -. { .0. } = B ) | 
						
							| 5 |  | 2nsgsimpgd.5 |  |-  ( ( ph /\ x e. ( NrmSGrp ` G ) ) -> ( x = { .0. } \/ x = B ) ) | 
						
							| 6 |  | elprg |  |-  ( x e. ( NrmSGrp ` G ) -> ( x e. { { .0. } , B } <-> ( x = { .0. } \/ x = B ) ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ph /\ x e. ( NrmSGrp ` G ) ) -> ( x e. { { .0. } , B } <-> ( x = { .0. } \/ x = B ) ) ) | 
						
							| 8 | 5 7 | mpbird |  |-  ( ( ph /\ x e. ( NrmSGrp ` G ) ) -> x e. { { .0. } , B } ) | 
						
							| 9 |  | simpr |  |-  ( ( ph /\ x = { .0. } ) -> x = { .0. } ) | 
						
							| 10 | 2 | 0nsg |  |-  ( G e. Grp -> { .0. } e. ( NrmSGrp ` G ) ) | 
						
							| 11 | 3 10 | syl |  |-  ( ph -> { .0. } e. ( NrmSGrp ` G ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ph /\ x = { .0. } ) -> { .0. } e. ( NrmSGrp ` G ) ) | 
						
							| 13 | 9 12 | eqeltrd |  |-  ( ( ph /\ x = { .0. } ) -> x e. ( NrmSGrp ` G ) ) | 
						
							| 14 | 13 | adantlr |  |-  ( ( ( ph /\ x e. { { .0. } , B } ) /\ x = { .0. } ) -> x e. ( NrmSGrp ` G ) ) | 
						
							| 15 |  | simpr |  |-  ( ( ph /\ x = B ) -> x = B ) | 
						
							| 16 | 1 | nsgid |  |-  ( G e. Grp -> B e. ( NrmSGrp ` G ) ) | 
						
							| 17 | 3 16 | syl |  |-  ( ph -> B e. ( NrmSGrp ` G ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ph /\ x = B ) -> B e. ( NrmSGrp ` G ) ) | 
						
							| 19 | 15 18 | eqeltrd |  |-  ( ( ph /\ x = B ) -> x e. ( NrmSGrp ` G ) ) | 
						
							| 20 | 19 | adantlr |  |-  ( ( ( ph /\ x e. { { .0. } , B } ) /\ x = B ) -> x e. ( NrmSGrp ` G ) ) | 
						
							| 21 |  | elpri |  |-  ( x e. { { .0. } , B } -> ( x = { .0. } \/ x = B ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ph /\ x e. { { .0. } , B } ) -> ( x = { .0. } \/ x = B ) ) | 
						
							| 23 | 14 20 22 | mpjaodan |  |-  ( ( ph /\ x e. { { .0. } , B } ) -> x e. ( NrmSGrp ` G ) ) | 
						
							| 24 | 8 23 | impbida |  |-  ( ph -> ( x e. ( NrmSGrp ` G ) <-> x e. { { .0. } , B } ) ) | 
						
							| 25 | 24 | eqrdv |  |-  ( ph -> ( NrmSGrp ` G ) = { { .0. } , B } ) | 
						
							| 26 |  | snex |  |-  { .0. } e. _V | 
						
							| 27 | 26 | a1i |  |-  ( ph -> { .0. } e. _V ) | 
						
							| 28 | 1 | fvexi |  |-  B e. _V | 
						
							| 29 | 28 | a1i |  |-  ( ph -> B e. _V ) | 
						
							| 30 | 27 29 4 | enpr2d |  |-  ( ph -> { { .0. } , B } ~~ 2o ) | 
						
							| 31 | 25 30 | eqbrtrd |  |-  ( ph -> ( NrmSGrp ` G ) ~~ 2o ) | 
						
							| 32 | 3 31 | issimpgd |  |-  ( ph -> G e. SimpGrp ) |