Metamath Proof Explorer


Theorem 2nsgsimpgd

Description: If any normal subgroup of a nontrivial group is either the trivial subgroup or the whole group, the group is simple. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses 2nsgsimpgd.1 B = Base G
2nsgsimpgd.2 0 ˙ = 0 G
2nsgsimpgd.3 φ G Grp
2nsgsimpgd.4 φ ¬ 0 ˙ = B
2nsgsimpgd.5 φ x NrmSGrp G x = 0 ˙ x = B
Assertion 2nsgsimpgd φ G SimpGrp

Proof

Step Hyp Ref Expression
1 2nsgsimpgd.1 B = Base G
2 2nsgsimpgd.2 0 ˙ = 0 G
3 2nsgsimpgd.3 φ G Grp
4 2nsgsimpgd.4 φ ¬ 0 ˙ = B
5 2nsgsimpgd.5 φ x NrmSGrp G x = 0 ˙ x = B
6 elprg x NrmSGrp G x 0 ˙ B x = 0 ˙ x = B
7 6 adantl φ x NrmSGrp G x 0 ˙ B x = 0 ˙ x = B
8 5 7 mpbird φ x NrmSGrp G x 0 ˙ B
9 simpr φ x = 0 ˙ x = 0 ˙
10 2 0nsg G Grp 0 ˙ NrmSGrp G
11 3 10 syl φ 0 ˙ NrmSGrp G
12 11 adantr φ x = 0 ˙ 0 ˙ NrmSGrp G
13 9 12 eqeltrd φ x = 0 ˙ x NrmSGrp G
14 13 adantlr φ x 0 ˙ B x = 0 ˙ x NrmSGrp G
15 simpr φ x = B x = B
16 1 nsgid G Grp B NrmSGrp G
17 3 16 syl φ B NrmSGrp G
18 17 adantr φ x = B B NrmSGrp G
19 15 18 eqeltrd φ x = B x NrmSGrp G
20 19 adantlr φ x 0 ˙ B x = B x NrmSGrp G
21 elpri x 0 ˙ B x = 0 ˙ x = B
22 21 adantl φ x 0 ˙ B x = 0 ˙ x = B
23 14 20 22 mpjaodan φ x 0 ˙ B x NrmSGrp G
24 8 23 impbida φ x NrmSGrp G x 0 ˙ B
25 24 eqrdv φ NrmSGrp G = 0 ˙ B
26 snex 0 ˙ V
27 26 a1i φ 0 ˙ V
28 1 fvexi B V
29 28 a1i φ B V
30 27 29 4 enpr2d φ 0 ˙ B 2 𝑜
31 25 30 eqbrtrd φ NrmSGrp G 2 𝑜
32 3 31 issimpgd φ G SimpGrp