Metamath Proof Explorer


Theorem issimpgd

Description: Deduce a simple group from its properties. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses issimpgd.1 φ G Grp
issimpgd.2 φ NrmSGrp G 2 𝑜
Assertion issimpgd φ G SimpGrp

Proof

Step Hyp Ref Expression
1 issimpgd.1 φ G Grp
2 issimpgd.2 φ NrmSGrp G 2 𝑜
3 issimpg G SimpGrp G Grp NrmSGrp G 2 𝑜
4 1 2 3 sylanbrc φ G SimpGrp