Metamath Proof Explorer


Theorem issimpgd

Description: Deduce a simple group from its properties. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses issimpgd.1
|- ( ph -> G e. Grp )
issimpgd.2
|- ( ph -> ( NrmSGrp ` G ) ~~ 2o )
Assertion issimpgd
|- ( ph -> G e. SimpGrp )

Proof

Step Hyp Ref Expression
1 issimpgd.1
 |-  ( ph -> G e. Grp )
2 issimpgd.2
 |-  ( ph -> ( NrmSGrp ` G ) ~~ 2o )
3 issimpg
 |-  ( G e. SimpGrp <-> ( G e. Grp /\ ( NrmSGrp ` G ) ~~ 2o ) )
4 1 2 3 sylanbrc
 |-  ( ph -> G e. SimpGrp )