Description: Deduce a simple group from its properties. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | issimpgd.1 | |- ( ph -> G e. Grp ) |
|
issimpgd.2 | |- ( ph -> ( NrmSGrp ` G ) ~~ 2o ) |
||
Assertion | issimpgd | |- ( ph -> G e. SimpGrp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issimpgd.1 | |- ( ph -> G e. Grp ) |
|
2 | issimpgd.2 | |- ( ph -> ( NrmSGrp ` G ) ~~ 2o ) |
|
3 | issimpg | |- ( G e. SimpGrp <-> ( G e. Grp /\ ( NrmSGrp ` G ) ~~ 2o ) ) |
|
4 | 1 2 3 | sylanbrc | |- ( ph -> G e. SimpGrp ) |