Description: Deduce a simple group from its properties. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issimpgd.1 | |- ( ph -> G e. Grp ) | |
| issimpgd.2 | |- ( ph -> ( NrmSGrp ` G ) ~~ 2o ) | ||
| Assertion | issimpgd | |- ( ph -> G e. SimpGrp ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | issimpgd.1 | |- ( ph -> G e. Grp ) | |
| 2 | issimpgd.2 | |- ( ph -> ( NrmSGrp ` G ) ~~ 2o ) | |
| 3 | issimpg | |- ( G e. SimpGrp <-> ( G e. Grp /\ ( NrmSGrp ` G ) ~~ 2o ) ) | |
| 4 | 1 2 3 | sylanbrc | |- ( ph -> G e. SimpGrp ) |