Metamath Proof Explorer


Theorem issimpgd

Description: Deduce a simple group from its properties. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses issimpgd.1 ( 𝜑𝐺 ∈ Grp )
issimpgd.2 ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ≈ 2o )
Assertion issimpgd ( 𝜑𝐺 ∈ SimpGrp )

Proof

Step Hyp Ref Expression
1 issimpgd.1 ( 𝜑𝐺 ∈ Grp )
2 issimpgd.2 ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ≈ 2o )
3 issimpg ( 𝐺 ∈ SimpGrp ↔ ( 𝐺 ∈ Grp ∧ ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) )
4 1 2 3 sylanbrc ( 𝜑𝐺 ∈ SimpGrp )