Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | simpggrp | ⊢ ( 𝐺 ∈ SimpGrp → 𝐺 ∈ Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issimpg | ⊢ ( 𝐺 ∈ SimpGrp ↔ ( 𝐺 ∈ Grp ∧ ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) ) | |
2 | 1 | simplbi | ⊢ ( 𝐺 ∈ SimpGrp → 𝐺 ∈ Grp ) |