Metamath Proof Explorer


Theorem simpggrp

Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Assertion simpggrp ( 𝐺 ∈ SimpGrp → 𝐺 ∈ Grp )

Proof

Step Hyp Ref Expression
1 issimpg ( 𝐺 ∈ SimpGrp ↔ ( 𝐺 ∈ Grp ∧ ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) )
2 1 simplbi ( 𝐺 ∈ SimpGrp → 𝐺 ∈ Grp )