Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | simpggrpd.1 | ⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) | |
| Assertion | simpggrpd | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpggrpd.1 | ⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) | |
| 2 | simpggrp | ⊢ ( 𝐺 ∈ SimpGrp → 𝐺 ∈ Grp ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |