Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | simpggrpd.1 | ⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) | |
Assertion | simpggrpd | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpggrpd.1 | ⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) | |
2 | simpggrp | ⊢ ( 𝐺 ∈ SimpGrp → 𝐺 ∈ Grp ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |