Metamath Proof Explorer


Theorem simpggrpd

Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypothesis simpggrpd.1 ( 𝜑𝐺 ∈ SimpGrp )
Assertion simpggrpd ( 𝜑𝐺 ∈ Grp )

Proof

Step Hyp Ref Expression
1 simpggrpd.1 ( 𝜑𝐺 ∈ SimpGrp )
2 simpggrp ( 𝐺 ∈ SimpGrp → 𝐺 ∈ Grp )
3 1 2 syl ( 𝜑𝐺 ∈ Grp )