Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | simpggrpd.1 | |- ( ph -> G e. SimpGrp ) |
|
Assertion | simpggrpd | |- ( ph -> G e. Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpggrpd.1 | |- ( ph -> G e. SimpGrp ) |
|
2 | simpggrp | |- ( G e. SimpGrp -> G e. Grp ) |
|
3 | 1 2 | syl | |- ( ph -> G e. Grp ) |