Description: A simple group has two normal subgroups. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | simpg2nsg | |- ( G e. SimpGrp -> ( NrmSGrp ` G ) ~~ 2o ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | issimpg | |- ( G e. SimpGrp <-> ( G e. Grp /\ ( NrmSGrp ` G ) ~~ 2o ) ) | |
| 2 | 1 | simprbi | |- ( G e. SimpGrp -> ( NrmSGrp ` G ) ~~ 2o ) |