Description: The predicate "is a simple group". (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | issimpg | |- ( G e. SimpGrp <-> ( G e. Grp /\ ( NrmSGrp ` G ) ~~ 2o ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | |- ( g = G -> ( NrmSGrp ` g ) = ( NrmSGrp ` G ) ) |
|
2 | 1 | breq1d | |- ( g = G -> ( ( NrmSGrp ` g ) ~~ 2o <-> ( NrmSGrp ` G ) ~~ 2o ) ) |
3 | df-simpg | |- SimpGrp = { g e. Grp | ( NrmSGrp ` g ) ~~ 2o } |
|
4 | 2 3 | elrab2 | |- ( G e. SimpGrp <-> ( G e. Grp /\ ( NrmSGrp ` G ) ~~ 2o ) ) |