Metamath Proof Explorer


Definition df-simpg

Description: Define class of all simple groups. A simple group is a group ( df-grp ) with exactly two normal subgroups. These are always the subgroup of all elements and the subgroup containing only the identity ( simpgnsgbid ). (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Assertion df-simpg
|- SimpGrp = { g e. Grp | ( NrmSGrp ` g ) ~~ 2o }

Detailed syntax breakdown

Step Hyp Ref Expression
0 csimpg
 |-  SimpGrp
1 vg
 |-  g
2 cgrp
 |-  Grp
3 cnsg
 |-  NrmSGrp
4 1 cv
 |-  g
5 4 3 cfv
 |-  ( NrmSGrp ` g )
6 cen
 |-  ~~
7 c2o
 |-  2o
8 5 7 6 wbr
 |-  ( NrmSGrp ` g ) ~~ 2o
9 8 1 2 crab
 |-  { g e. Grp | ( NrmSGrp ` g ) ~~ 2o }
10 0 9 wceq
 |-  SimpGrp = { g e. Grp | ( NrmSGrp ` g ) ~~ 2o }