Description: Define class of all simple groups. A simple group is a group ( df-grp ) with exactly two normal subgroups. These are always the subgroup of all elements and the subgroup containing only the identity ( simpgnsgbid ). (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-simpg | |- SimpGrp = { g e. Grp | ( NrmSGrp ` g ) ~~ 2o } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csimpg | |- SimpGrp |
|
| 1 | vg | |- g |
|
| 2 | cgrp | |- Grp |
|
| 3 | cnsg | |- NrmSGrp |
|
| 4 | 1 | cv | |- g |
| 5 | 4 3 | cfv | |- ( NrmSGrp ` g ) |
| 6 | cen | |- ~~ |
|
| 7 | c2o | |- 2o |
|
| 8 | 5 7 6 | wbr | |- ( NrmSGrp ` g ) ~~ 2o |
| 9 | 8 1 2 | crab | |- { g e. Grp | ( NrmSGrp ` g ) ~~ 2o } |
| 10 | 0 9 | wceq | |- SimpGrp = { g e. Grp | ( NrmSGrp ` g ) ~~ 2o } |