Description: Define class of all simple groups. A simple group is a group ( df-grp ) with exactly two normal subgroups. These are always the subgroup of all elements and the subgroup containing only the identity ( simpgnsgbid ). (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | df-simpg | |- SimpGrp = { g e. Grp | ( NrmSGrp ` g ) ~~ 2o } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | csimpg | |- SimpGrp |
|
1 | vg | |- g |
|
2 | cgrp | |- Grp |
|
3 | cnsg | |- NrmSGrp |
|
4 | 1 | cv | |- g |
5 | 4 3 | cfv | |- ( NrmSGrp ` g ) |
6 | cen | |- ~~ |
|
7 | c2o | |- 2o |
|
8 | 5 7 6 | wbr | |- ( NrmSGrp ` g ) ~~ 2o |
9 | 8 1 2 | crab | |- { g e. Grp | ( NrmSGrp ` g ) ~~ 2o } |
10 | 0 9 | wceq | |- SimpGrp = { g e. Grp | ( NrmSGrp ` g ) ~~ 2o } |