Metamath Proof Explorer


Definition df-simpg

Description: Define class of all simple groups. A simple group is a group ( df-grp ) with exactly two normal subgroups. These are always the subgroup of all elements and the subgroup containing only the identity ( simpgnsgbid ). (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Assertion df-simpg SimpGrp = { 𝑔 ∈ Grp ∣ ( NrmSGrp ‘ 𝑔 ) ≈ 2o }

Detailed syntax breakdown

Step Hyp Ref Expression
0 csimpg SimpGrp
1 vg 𝑔
2 cgrp Grp
3 cnsg NrmSGrp
4 1 cv 𝑔
5 4 3 cfv ( NrmSGrp ‘ 𝑔 )
6 cen
7 c2o 2o
8 5 7 6 wbr ( NrmSGrp ‘ 𝑔 ) ≈ 2o
9 8 1 2 crab { 𝑔 ∈ Grp ∣ ( NrmSGrp ‘ 𝑔 ) ≈ 2o }
10 0 9 wceq SimpGrp = { 𝑔 ∈ Grp ∣ ( NrmSGrp ‘ 𝑔 ) ≈ 2o }