Description: The predicate "is a simple group". (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | issimpg | ⊢ ( 𝐺 ∈ SimpGrp ↔ ( 𝐺 ∈ Grp ∧ ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( NrmSGrp ‘ 𝑔 ) = ( NrmSGrp ‘ 𝐺 ) ) | |
| 2 | 1 | breq1d | ⊢ ( 𝑔 = 𝐺 → ( ( NrmSGrp ‘ 𝑔 ) ≈ 2o ↔ ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) ) | 
| 3 | df-simpg | ⊢ SimpGrp = { 𝑔 ∈ Grp ∣ ( NrmSGrp ‘ 𝑔 ) ≈ 2o } | |
| 4 | 2 3 | elrab2 | ⊢ ( 𝐺 ∈ SimpGrp ↔ ( 𝐺 ∈ Grp ∧ ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) ) |