Description: The predicate "is a simple group". (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | issimpg | ⊢ ( 𝐺 ∈ SimpGrp ↔ ( 𝐺 ∈ Grp ∧ ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( NrmSGrp ‘ 𝑔 ) = ( NrmSGrp ‘ 𝐺 ) ) | |
2 | 1 | breq1d | ⊢ ( 𝑔 = 𝐺 → ( ( NrmSGrp ‘ 𝑔 ) ≈ 2o ↔ ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) ) |
3 | df-simpg | ⊢ SimpGrp = { 𝑔 ∈ Grp ∣ ( NrmSGrp ‘ 𝑔 ) ≈ 2o } | |
4 | 2 3 | elrab2 | ⊢ ( 𝐺 ∈ SimpGrp ↔ ( 𝐺 ∈ Grp ∧ ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) ) |