Metamath Proof Explorer


Theorem trivnsimpgd

Description: Trivial groups are not simple. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses trivnsimpgd.1
|- B = ( Base ` G )
trivnsimpgd.2
|- .0. = ( 0g ` G )
trivnsimpgd.3
|- ( ph -> G e. Grp )
trivnsimpgd.4
|- ( ph -> B = { .0. } )
Assertion trivnsimpgd
|- ( ph -> -. G e. SimpGrp )

Proof

Step Hyp Ref Expression
1 trivnsimpgd.1
 |-  B = ( Base ` G )
2 trivnsimpgd.2
 |-  .0. = ( 0g ` G )
3 trivnsimpgd.3
 |-  ( ph -> G e. Grp )
4 trivnsimpgd.4
 |-  ( ph -> B = { .0. } )
5 snnen2o
 |-  -. { B } ~~ 2o
6 1 2 3 4 trivnsgd
 |-  ( ph -> ( NrmSGrp ` G ) = { B } )
7 6 breq1d
 |-  ( ph -> ( ( NrmSGrp ` G ) ~~ 2o <-> { B } ~~ 2o ) )
8 5 7 mtbiri
 |-  ( ph -> -. ( NrmSGrp ` G ) ~~ 2o )
9 simpg2nsg
 |-  ( G e. SimpGrp -> ( NrmSGrp ` G ) ~~ 2o )
10 8 9 nsyl
 |-  ( ph -> -. G e. SimpGrp )