Description: Trivial groups are not simple. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | trivnsimpgd.1 | |- B = ( Base ` G ) |
|
trivnsimpgd.2 | |- .0. = ( 0g ` G ) |
||
trivnsimpgd.3 | |- ( ph -> G e. Grp ) |
||
trivnsimpgd.4 | |- ( ph -> B = { .0. } ) |
||
Assertion | trivnsimpgd | |- ( ph -> -. G e. SimpGrp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trivnsimpgd.1 | |- B = ( Base ` G ) |
|
2 | trivnsimpgd.2 | |- .0. = ( 0g ` G ) |
|
3 | trivnsimpgd.3 | |- ( ph -> G e. Grp ) |
|
4 | trivnsimpgd.4 | |- ( ph -> B = { .0. } ) |
|
5 | snnen2o | |- -. { B } ~~ 2o |
|
6 | 1 2 3 4 | trivnsgd | |- ( ph -> ( NrmSGrp ` G ) = { B } ) |
7 | 6 | breq1d | |- ( ph -> ( ( NrmSGrp ` G ) ~~ 2o <-> { B } ~~ 2o ) ) |
8 | 5 7 | mtbiri | |- ( ph -> -. ( NrmSGrp ` G ) ~~ 2o ) |
9 | simpg2nsg | |- ( G e. SimpGrp -> ( NrmSGrp ` G ) ~~ 2o ) |
|
10 | 8 9 | nsyl | |- ( ph -> -. G e. SimpGrp ) |