Description: Simple groups are nontrivial. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | simpgntrivd.1 | |- B = ( Base ` G ) |
|
simpgntrivd.2 | |- .0. = ( 0g ` G ) |
||
simpgntrivd.3 | |- ( ph -> G e. SimpGrp ) |
||
Assertion | simpgntrivd | |- ( ph -> -. B = { .0. } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpgntrivd.1 | |- B = ( Base ` G ) |
|
2 | simpgntrivd.2 | |- .0. = ( 0g ` G ) |
|
3 | simpgntrivd.3 | |- ( ph -> G e. SimpGrp ) |
|
4 | 3 | adantr | |- ( ( ph /\ B = { .0. } ) -> G e. SimpGrp ) |
5 | 3 | simpggrpd | |- ( ph -> G e. Grp ) |
6 | 5 | adantr | |- ( ( ph /\ B = { .0. } ) -> G e. Grp ) |
7 | simpr | |- ( ( ph /\ B = { .0. } ) -> B = { .0. } ) |
|
8 | 1 2 6 7 | trivnsimpgd | |- ( ( ph /\ B = { .0. } ) -> -. G e. SimpGrp ) |
9 | 4 8 | pm2.65da | |- ( ph -> -. B = { .0. } ) |