Metamath Proof Explorer


Theorem simpgntrivd

Description: Simple groups are nontrivial. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses simpgntrivd.1
|- B = ( Base ` G )
simpgntrivd.2
|- .0. = ( 0g ` G )
simpgntrivd.3
|- ( ph -> G e. SimpGrp )
Assertion simpgntrivd
|- ( ph -> -. B = { .0. } )

Proof

Step Hyp Ref Expression
1 simpgntrivd.1
 |-  B = ( Base ` G )
2 simpgntrivd.2
 |-  .0. = ( 0g ` G )
3 simpgntrivd.3
 |-  ( ph -> G e. SimpGrp )
4 3 adantr
 |-  ( ( ph /\ B = { .0. } ) -> G e. SimpGrp )
5 3 simpggrpd
 |-  ( ph -> G e. Grp )
6 5 adantr
 |-  ( ( ph /\ B = { .0. } ) -> G e. Grp )
7 simpr
 |-  ( ( ph /\ B = { .0. } ) -> B = { .0. } )
8 1 2 6 7 trivnsimpgd
 |-  ( ( ph /\ B = { .0. } ) -> -. G e. SimpGrp )
9 4 8 pm2.65da
 |-  ( ph -> -. B = { .0. } )