Description: Simple groups are nontrivial. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | simpgntrivd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
simpgntrivd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
simpgntrivd.3 | ⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) | ||
Assertion | simpgntrivd | ⊢ ( 𝜑 → ¬ 𝐵 = { 0 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpgntrivd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
2 | simpgntrivd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
3 | simpgntrivd.3 | ⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) | |
4 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 = { 0 } ) → 𝐺 ∈ SimpGrp ) |
5 | 3 | simpggrpd | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
6 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 = { 0 } ) → 𝐺 ∈ Grp ) |
7 | simpr | ⊢ ( ( 𝜑 ∧ 𝐵 = { 0 } ) → 𝐵 = { 0 } ) | |
8 | 1 2 6 7 | trivnsimpgd | ⊢ ( ( 𝜑 ∧ 𝐵 = { 0 } ) → ¬ 𝐺 ∈ SimpGrp ) |
9 | 4 8 | pm2.65da | ⊢ ( 𝜑 → ¬ 𝐵 = { 0 } ) |