Description: Simple groups are nontrivial. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | simpgntrivd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| simpgntrivd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| simpgntrivd.3 | ⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) | ||
| Assertion | simpgntrivd | ⊢ ( 𝜑 → ¬ 𝐵 = { 0 } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpgntrivd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | simpgntrivd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | simpgntrivd.3 | ⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 = { 0 } ) → 𝐺 ∈ SimpGrp ) | 
| 5 | 3 | simpggrpd | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | 
| 6 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 = { 0 } ) → 𝐺 ∈ Grp ) | 
| 7 | simpr | ⊢ ( ( 𝜑 ∧ 𝐵 = { 0 } ) → 𝐵 = { 0 } ) | |
| 8 | 1 2 6 7 | trivnsimpgd | ⊢ ( ( 𝜑 ∧ 𝐵 = { 0 } ) → ¬ 𝐺 ∈ SimpGrp ) | 
| 9 | 4 8 | pm2.65da | ⊢ ( 𝜑 → ¬ 𝐵 = { 0 } ) |