Metamath Proof Explorer


Theorem simpgntrivd

Description: Simple groups are nontrivial. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses simpgntrivd.1 𝐵 = ( Base ‘ 𝐺 )
simpgntrivd.2 0 = ( 0g𝐺 )
simpgntrivd.3 ( 𝜑𝐺 ∈ SimpGrp )
Assertion simpgntrivd ( 𝜑 → ¬ 𝐵 = { 0 } )

Proof

Step Hyp Ref Expression
1 simpgntrivd.1 𝐵 = ( Base ‘ 𝐺 )
2 simpgntrivd.2 0 = ( 0g𝐺 )
3 simpgntrivd.3 ( 𝜑𝐺 ∈ SimpGrp )
4 3 adantr ( ( 𝜑𝐵 = { 0 } ) → 𝐺 ∈ SimpGrp )
5 3 simpggrpd ( 𝜑𝐺 ∈ Grp )
6 5 adantr ( ( 𝜑𝐵 = { 0 } ) → 𝐺 ∈ Grp )
7 simpr ( ( 𝜑𝐵 = { 0 } ) → 𝐵 = { 0 } )
8 1 2 6 7 trivnsimpgd ( ( 𝜑𝐵 = { 0 } ) → ¬ 𝐺 ∈ SimpGrp )
9 4 8 pm2.65da ( 𝜑 → ¬ 𝐵 = { 0 } )