Metamath Proof Explorer


Theorem simpgntrivd

Description: Simple groups are nontrivial. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses simpgntrivd.1 B=BaseG
simpgntrivd.2 0˙=0G
simpgntrivd.3 φGSimpGrp
Assertion simpgntrivd φ¬B=0˙

Proof

Step Hyp Ref Expression
1 simpgntrivd.1 B=BaseG
2 simpgntrivd.2 0˙=0G
3 simpgntrivd.3 φGSimpGrp
4 3 adantr φB=0˙GSimpGrp
5 3 simpggrpd φGGrp
6 5 adantr φB=0˙GGrp
7 simpr φB=0˙B=0˙
8 1 2 6 7 trivnsimpgd φB=0˙¬GSimpGrp
9 4 8 pm2.65da φ¬B=0˙