Metamath Proof Explorer


Theorem trivnsimpgd

Description: Trivial groups are not simple. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses trivnsimpgd.1 B = Base G
trivnsimpgd.2 0 ˙ = 0 G
trivnsimpgd.3 φ G Grp
trivnsimpgd.4 φ B = 0 ˙
Assertion trivnsimpgd φ ¬ G SimpGrp

Proof

Step Hyp Ref Expression
1 trivnsimpgd.1 B = Base G
2 trivnsimpgd.2 0 ˙ = 0 G
3 trivnsimpgd.3 φ G Grp
4 trivnsimpgd.4 φ B = 0 ˙
5 snnen2o ¬ B 2 𝑜
6 1 2 3 4 trivnsgd φ NrmSGrp G = B
7 6 breq1d φ NrmSGrp G 2 𝑜 B 2 𝑜
8 5 7 mtbiri φ ¬ NrmSGrp G 2 𝑜
9 simpg2nsg G SimpGrp NrmSGrp G 2 𝑜
10 8 9 nsyl φ ¬ G SimpGrp