Metamath Proof Explorer


Theorem trivnsgd

Description: The only normal subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses trivnsgd.1 B = Base G
trivnsgd.2 0 ˙ = 0 G
trivnsgd.3 φ G Grp
trivnsgd.4 φ B = 0 ˙
Assertion trivnsgd φ NrmSGrp G = B

Proof

Step Hyp Ref Expression
1 trivnsgd.1 B = Base G
2 trivnsgd.2 0 ˙ = 0 G
3 trivnsgd.3 φ G Grp
4 trivnsgd.4 φ B = 0 ˙
5 nsgsubg x NrmSGrp G x SubGrp G
6 5 a1i φ x NrmSGrp G x SubGrp G
7 6 ssrdv φ NrmSGrp G SubGrp G
8 1 2 3 4 trivsubgsnd φ SubGrp G = B
9 7 8 sseqtrd φ NrmSGrp G B
10 1 nsgid G Grp B NrmSGrp G
11 3 10 syl φ B NrmSGrp G
12 11 snssd φ B NrmSGrp G
13 9 12 eqssd φ NrmSGrp G = B