Database
BASIC ALGEBRAIC STRUCTURES
Groups
Simple groups
Definition and basic properties
simpg2nsg
Next ⟩
trivnsimpgd
Metamath Proof Explorer
Ascii
Unicode
Theorem
simpg2nsg
Description:
A simple group has two normal subgroups.
(Contributed by
Rohan Ridenour
, 3-Aug-2023)
Ref
Expression
Assertion
simpg2nsg
⊢
G
∈
SimpGrp
→
NrmSGrp
⁡
G
≈
2
𝑜
Proof
Step
Hyp
Ref
Expression
1
issimpg
⊢
G
∈
SimpGrp
↔
G
∈
Grp
∧
NrmSGrp
⁡
G
≈
2
𝑜
2
1
simprbi
⊢
G
∈
SimpGrp
→
NrmSGrp
⁡
G
≈
2
𝑜