Metamath Proof Explorer


Theorem simpg2nsg

Description: A simple group has two normal subgroups. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Assertion simpg2nsg G SimpGrp NrmSGrp G 2 𝑜

Proof

Step Hyp Ref Expression
1 issimpg G SimpGrp G Grp NrmSGrp G 2 𝑜
2 1 simprbi G SimpGrp NrmSGrp G 2 𝑜