Description: A simple group has two normal subgroups. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | simpg2nsg | ⊢ ( 𝐺 ∈ SimpGrp → ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issimpg | ⊢ ( 𝐺 ∈ SimpGrp ↔ ( 𝐺 ∈ Grp ∧ ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) ) | |
2 | 1 | simprbi | ⊢ ( 𝐺 ∈ SimpGrp → ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) |