Metamath Proof Explorer


Theorem simpg2nsg

Description: A simple group has two normal subgroups. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Assertion simpg2nsg ( 𝐺 ∈ SimpGrp → ( NrmSGrp ‘ 𝐺 ) ≈ 2o )

Proof

Step Hyp Ref Expression
1 issimpg ( 𝐺 ∈ SimpGrp ↔ ( 𝐺 ∈ Grp ∧ ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) )
2 1 simprbi ( 𝐺 ∈ SimpGrp → ( NrmSGrp ‘ 𝐺 ) ≈ 2o )