Metamath Proof Explorer


Theorem trivnsimpgd

Description: Trivial groups are not simple. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses trivnsimpgd.1 𝐵 = ( Base ‘ 𝐺 )
trivnsimpgd.2 0 = ( 0g𝐺 )
trivnsimpgd.3 ( 𝜑𝐺 ∈ Grp )
trivnsimpgd.4 ( 𝜑𝐵 = { 0 } )
Assertion trivnsimpgd ( 𝜑 → ¬ 𝐺 ∈ SimpGrp )

Proof

Step Hyp Ref Expression
1 trivnsimpgd.1 𝐵 = ( Base ‘ 𝐺 )
2 trivnsimpgd.2 0 = ( 0g𝐺 )
3 trivnsimpgd.3 ( 𝜑𝐺 ∈ Grp )
4 trivnsimpgd.4 ( 𝜑𝐵 = { 0 } )
5 snnen2o ¬ { 𝐵 } ≈ 2o
6 1 2 3 4 trivnsgd ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) = { 𝐵 } )
7 6 breq1d ( 𝜑 → ( ( NrmSGrp ‘ 𝐺 ) ≈ 2o ↔ { 𝐵 } ≈ 2o ) )
8 5 7 mtbiri ( 𝜑 → ¬ ( NrmSGrp ‘ 𝐺 ) ≈ 2o )
9 simpg2nsg ( 𝐺 ∈ SimpGrp → ( NrmSGrp ‘ 𝐺 ) ≈ 2o )
10 8 9 nsyl ( 𝜑 → ¬ 𝐺 ∈ SimpGrp )