Description: Trivial groups are not simple. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | trivnsimpgd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
trivnsimpgd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
trivnsimpgd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
trivnsimpgd.4 | ⊢ ( 𝜑 → 𝐵 = { 0 } ) | ||
Assertion | trivnsimpgd | ⊢ ( 𝜑 → ¬ 𝐺 ∈ SimpGrp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trivnsimpgd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
2 | trivnsimpgd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
3 | trivnsimpgd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
4 | trivnsimpgd.4 | ⊢ ( 𝜑 → 𝐵 = { 0 } ) | |
5 | snnen2o | ⊢ ¬ { 𝐵 } ≈ 2o | |
6 | 1 2 3 4 | trivnsgd | ⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) = { 𝐵 } ) |
7 | 6 | breq1d | ⊢ ( 𝜑 → ( ( NrmSGrp ‘ 𝐺 ) ≈ 2o ↔ { 𝐵 } ≈ 2o ) ) |
8 | 5 7 | mtbiri | ⊢ ( 𝜑 → ¬ ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) |
9 | simpg2nsg | ⊢ ( 𝐺 ∈ SimpGrp → ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) | |
10 | 8 9 | nsyl | ⊢ ( 𝜑 → ¬ 𝐺 ∈ SimpGrp ) |