Description: Trivial groups are not simple. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trivnsimpgd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| trivnsimpgd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| trivnsimpgd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| trivnsimpgd.4 | ⊢ ( 𝜑 → 𝐵 = { 0 } ) | ||
| Assertion | trivnsimpgd | ⊢ ( 𝜑 → ¬ 𝐺 ∈ SimpGrp ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | trivnsimpgd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | trivnsimpgd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | trivnsimpgd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 4 | trivnsimpgd.4 | ⊢ ( 𝜑 → 𝐵 = { 0 } ) | |
| 5 | snnen2o | ⊢ ¬ { 𝐵 } ≈ 2o | |
| 6 | 1 2 3 4 | trivnsgd | ⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) = { 𝐵 } ) | 
| 7 | 6 | breq1d | ⊢ ( 𝜑 → ( ( NrmSGrp ‘ 𝐺 ) ≈ 2o ↔ { 𝐵 } ≈ 2o ) ) | 
| 8 | 5 7 | mtbiri | ⊢ ( 𝜑 → ¬ ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) | 
| 9 | simpg2nsg | ⊢ ( 𝐺 ∈ SimpGrp → ( NrmSGrp ‘ 𝐺 ) ≈ 2o ) | |
| 10 | 8 9 | nsyl | ⊢ ( 𝜑 → ¬ 𝐺 ∈ SimpGrp ) |