| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpgnideld.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | simpgnideld.2 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | simpgnideld.3 | ⊢ ( 𝜑  →  𝐺  ∈  SimpGrp ) | 
						
							| 4 | 1 2 3 | simpgntrivd | ⊢ ( 𝜑  →  ¬  𝐵  =  {  0  } ) | 
						
							| 5 | 3 | simpggrpd | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 6 |  | grpmnd | ⊢ ( 𝐺  ∈  Grp  →  𝐺  ∈  Mnd ) | 
						
							| 7 | 1 2 | mndidcl | ⊢ ( 𝐺  ∈  Mnd  →   0   ∈  𝐵 ) | 
						
							| 8 | 5 6 7 | 3syl | ⊢ ( 𝜑  →   0   ∈  𝐵 ) | 
						
							| 9 | 8 | ne0d | ⊢ ( 𝜑  →  𝐵  ≠  ∅ ) | 
						
							| 10 |  | eqsn | ⊢ ( 𝐵  ≠  ∅  →  ( 𝐵  =  {  0  }  ↔  ∀ 𝑥  ∈  𝐵 𝑥  =   0  ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝜑  →  ( 𝐵  =  {  0  }  ↔  ∀ 𝑥  ∈  𝐵 𝑥  =   0  ) ) | 
						
							| 12 | 4 11 | mtbid | ⊢ ( 𝜑  →  ¬  ∀ 𝑥  ∈  𝐵 𝑥  =   0  ) | 
						
							| 13 |  | rexnal | ⊢ ( ∃ 𝑥  ∈  𝐵 ¬  𝑥  =   0   ↔  ¬  ∀ 𝑥  ∈  𝐵 𝑥  =   0  ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐵 ¬  𝑥  =   0  ) |