Step |
Hyp |
Ref |
Expression |
1 |
|
simpgnideld.1 |
|- B = ( Base ` G ) |
2 |
|
simpgnideld.2 |
|- .0. = ( 0g ` G ) |
3 |
|
simpgnideld.3 |
|- ( ph -> G e. SimpGrp ) |
4 |
1 2 3
|
simpgntrivd |
|- ( ph -> -. B = { .0. } ) |
5 |
3
|
simpggrpd |
|- ( ph -> G e. Grp ) |
6 |
|
grpmnd |
|- ( G e. Grp -> G e. Mnd ) |
7 |
1 2
|
mndidcl |
|- ( G e. Mnd -> .0. e. B ) |
8 |
5 6 7
|
3syl |
|- ( ph -> .0. e. B ) |
9 |
8
|
ne0d |
|- ( ph -> B =/= (/) ) |
10 |
|
eqsn |
|- ( B =/= (/) -> ( B = { .0. } <-> A. x e. B x = .0. ) ) |
11 |
9 10
|
syl |
|- ( ph -> ( B = { .0. } <-> A. x e. B x = .0. ) ) |
12 |
4 11
|
mtbid |
|- ( ph -> -. A. x e. B x = .0. ) |
13 |
|
rexnal |
|- ( E. x e. B -. x = .0. <-> -. A. x e. B x = .0. ) |
14 |
12 13
|
sylibr |
|- ( ph -> E. x e. B -. x = .0. ) |