| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpgnideld.1 |
|- B = ( Base ` G ) |
| 2 |
|
simpgnideld.2 |
|- .0. = ( 0g ` G ) |
| 3 |
|
simpgnideld.3 |
|- ( ph -> G e. SimpGrp ) |
| 4 |
1 2 3
|
simpgntrivd |
|- ( ph -> -. B = { .0. } ) |
| 5 |
3
|
simpggrpd |
|- ( ph -> G e. Grp ) |
| 6 |
|
grpmnd |
|- ( G e. Grp -> G e. Mnd ) |
| 7 |
1 2
|
mndidcl |
|- ( G e. Mnd -> .0. e. B ) |
| 8 |
5 6 7
|
3syl |
|- ( ph -> .0. e. B ) |
| 9 |
8
|
ne0d |
|- ( ph -> B =/= (/) ) |
| 10 |
|
eqsn |
|- ( B =/= (/) -> ( B = { .0. } <-> A. x e. B x = .0. ) ) |
| 11 |
9 10
|
syl |
|- ( ph -> ( B = { .0. } <-> A. x e. B x = .0. ) ) |
| 12 |
4 11
|
mtbid |
|- ( ph -> -. A. x e. B x = .0. ) |
| 13 |
|
rexnal |
|- ( E. x e. B -. x = .0. <-> -. A. x e. B x = .0. ) |
| 14 |
12 13
|
sylibr |
|- ( ph -> E. x e. B -. x = .0. ) |