Metamath Proof Explorer


Theorem simpgnideld

Description: A simple group contains a nonidentity element. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses simpgnideld.1
|- B = ( Base ` G )
simpgnideld.2
|- .0. = ( 0g ` G )
simpgnideld.3
|- ( ph -> G e. SimpGrp )
Assertion simpgnideld
|- ( ph -> E. x e. B -. x = .0. )

Proof

Step Hyp Ref Expression
1 simpgnideld.1
 |-  B = ( Base ` G )
2 simpgnideld.2
 |-  .0. = ( 0g ` G )
3 simpgnideld.3
 |-  ( ph -> G e. SimpGrp )
4 1 2 3 simpgntrivd
 |-  ( ph -> -. B = { .0. } )
5 3 simpggrpd
 |-  ( ph -> G e. Grp )
6 grpmnd
 |-  ( G e. Grp -> G e. Mnd )
7 1 2 mndidcl
 |-  ( G e. Mnd -> .0. e. B )
8 5 6 7 3syl
 |-  ( ph -> .0. e. B )
9 8 ne0d
 |-  ( ph -> B =/= (/) )
10 eqsn
 |-  ( B =/= (/) -> ( B = { .0. } <-> A. x e. B x = .0. ) )
11 9 10 syl
 |-  ( ph -> ( B = { .0. } <-> A. x e. B x = .0. ) )
12 4 11 mtbid
 |-  ( ph -> -. A. x e. B x = .0. )
13 rexnal
 |-  ( E. x e. B -. x = .0. <-> -. A. x e. B x = .0. )
14 12 13 sylibr
 |-  ( ph -> E. x e. B -. x = .0. )