| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpgnideld.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | simpgnideld.2 |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | simpgnideld.3 |  |-  ( ph -> G e. SimpGrp ) | 
						
							| 4 | 1 2 3 | simpgntrivd |  |-  ( ph -> -. B = { .0. } ) | 
						
							| 5 | 3 | simpggrpd |  |-  ( ph -> G e. Grp ) | 
						
							| 6 |  | grpmnd |  |-  ( G e. Grp -> G e. Mnd ) | 
						
							| 7 | 1 2 | mndidcl |  |-  ( G e. Mnd -> .0. e. B ) | 
						
							| 8 | 5 6 7 | 3syl |  |-  ( ph -> .0. e. B ) | 
						
							| 9 | 8 | ne0d |  |-  ( ph -> B =/= (/) ) | 
						
							| 10 |  | eqsn |  |-  ( B =/= (/) -> ( B = { .0. } <-> A. x e. B x = .0. ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( ph -> ( B = { .0. } <-> A. x e. B x = .0. ) ) | 
						
							| 12 | 4 11 | mtbid |  |-  ( ph -> -. A. x e. B x = .0. ) | 
						
							| 13 |  | rexnal |  |-  ( E. x e. B -. x = .0. <-> -. A. x e. B x = .0. ) | 
						
							| 14 | 12 13 | sylibr |  |-  ( ph -> E. x e. B -. x = .0. ) |