Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | simpggrp | |- ( G e. SimpGrp -> G e. Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issimpg | |- ( G e. SimpGrp <-> ( G e. Grp /\ ( NrmSGrp ` G ) ~~ 2o ) ) |
|
2 | 1 | simplbi | |- ( G e. SimpGrp -> G e. Grp ) |