Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | simpggrp | |- ( G e. SimpGrp -> G e. Grp ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | issimpg | |- ( G e. SimpGrp <-> ( G e. Grp /\ ( NrmSGrp ` G ) ~~ 2o ) ) | |
| 2 | 1 | simplbi | |- ( G e. SimpGrp -> G e. Grp ) |