Database
BASIC ALGEBRAIC STRUCTURES
Groups
Simple groups
Definition and basic properties
simpggrp
Next ⟩
simpggrpd
Metamath Proof Explorer
Ascii
Unicode
Theorem
simpggrp
Description:
A simple group is a group.
(Contributed by
Rohan Ridenour
, 3-Aug-2023)
Ref
Expression
Assertion
simpggrp
⊢
G
∈
SimpGrp
→
G
∈
Grp
Proof
Step
Hyp
Ref
Expression
1
issimpg
⊢
G
∈
SimpGrp
↔
G
∈
Grp
∧
NrmSGrp
⁡
G
≈
2
𝑜
2
1
simplbi
⊢
G
∈
SimpGrp
→
G
∈
Grp