Metamath Proof Explorer


Theorem simpgnsgeqd

Description: A normal subgroup of a simple group is either the whole group or the trivial subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses simpgnsgeqd.1 B=BaseG
simpgnsgeqd.2 0˙=0G
simpgnsgeqd.3 φGSimpGrp
simpgnsgeqd.4 φANrmSGrpG
Assertion simpgnsgeqd φA=0˙A=B

Proof

Step Hyp Ref Expression
1 simpgnsgeqd.1 B=BaseG
2 simpgnsgeqd.2 0˙=0G
3 simpgnsgeqd.3 φGSimpGrp
4 simpgnsgeqd.4 φANrmSGrpG
5 1 2 3 simpgnsgd φNrmSGrpG=0˙B
6 4 5 eleqtrd φA0˙B
7 elpri A0˙BA=0˙A=B
8 6 7 syl φA=0˙A=B