Metamath Proof Explorer


Theorem simpgnsgd

Description: The only normal subgroups of a simple group are the group itself and the trivial group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses simpgnsgd.1 B=BaseG
simpgnsgd.2 0˙=0G
simpgnsgd.3 φGSimpGrp
Assertion simpgnsgd φNrmSGrpG=0˙B

Proof

Step Hyp Ref Expression
1 simpgnsgd.1 B=BaseG
2 simpgnsgd.2 0˙=0G
3 simpgnsgd.3 φGSimpGrp
4 2onn 2𝑜ω
5 4 a1i φ2𝑜ω
6 nnfi 2𝑜ω2𝑜Fin
7 5 6 syl φ2𝑜Fin
8 simpg2nsg GSimpGrpNrmSGrpG2𝑜
9 3 8 syl φNrmSGrpG2𝑜
10 enfii 2𝑜FinNrmSGrpG2𝑜NrmSGrpGFin
11 7 9 10 syl2anc φNrmSGrpGFin
12 3 simpggrpd φGGrp
13 1 2 12 0idnsgd φ0˙BNrmSGrpG
14 snex 0˙V
15 14 a1i φ0˙V
16 1 a1i φB=BaseG
17 fvex BaseGV
18 16 17 eqeltrdi φBV
19 1 2 3 simpgntrivd φ¬B=0˙
20 19 neqcomd φ¬0˙=B
21 15 18 20 enpr2d φ0˙B2𝑜
22 21 ensymd φ2𝑜0˙B
23 entr NrmSGrpG2𝑜2𝑜0˙BNrmSGrpG0˙B
24 9 22 23 syl2anc φNrmSGrpG0˙B
25 11 13 24 phpeqd φNrmSGrpG=0˙B