Metamath Proof Explorer


Theorem simpgnsgd

Description: The only normal subgroups of a simple group are the group itself and the trivial group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses simpgnsgd.1 B = Base G
simpgnsgd.2 0 ˙ = 0 G
simpgnsgd.3 φ G SimpGrp
Assertion simpgnsgd φ NrmSGrp G = 0 ˙ B

Proof

Step Hyp Ref Expression
1 simpgnsgd.1 B = Base G
2 simpgnsgd.2 0 ˙ = 0 G
3 simpgnsgd.3 φ G SimpGrp
4 2onn 2 𝑜 ω
5 4 a1i φ 2 𝑜 ω
6 nnfi 2 𝑜 ω 2 𝑜 Fin
7 5 6 syl φ 2 𝑜 Fin
8 simpg2nsg G SimpGrp NrmSGrp G 2 𝑜
9 3 8 syl φ NrmSGrp G 2 𝑜
10 enfii 2 𝑜 Fin NrmSGrp G 2 𝑜 NrmSGrp G Fin
11 7 9 10 syl2anc φ NrmSGrp G Fin
12 3 simpggrpd φ G Grp
13 1 2 12 0idnsgd φ 0 ˙ B NrmSGrp G
14 snex 0 ˙ V
15 14 a1i φ 0 ˙ V
16 1 a1i φ B = Base G
17 fvex Base G V
18 16 17 eqeltrdi φ B V
19 1 2 3 simpgntrivd φ ¬ B = 0 ˙
20 19 neqcomd φ ¬ 0 ˙ = B
21 15 18 20 enpr2d φ 0 ˙ B 2 𝑜
22 21 ensymd φ 2 𝑜 0 ˙ B
23 entr NrmSGrp G 2 𝑜 2 𝑜 0 ˙ B NrmSGrp G 0 ˙ B
24 9 22 23 syl2anc φ NrmSGrp G 0 ˙ B
25 11 13 24 phpeqd φ NrmSGrp G = 0 ˙ B