Metamath Proof Explorer


Theorem ablsimpg1gend

Description: An abelian simple group is generated by any non-identity element. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses ablsimpg1gend.1
|- B = ( Base ` G )
ablsimpg1gend.2
|- .0. = ( 0g ` G )
ablsimpg1gend.3
|- .x. = ( .g ` G )
ablsimpg1gend.4
|- ( ph -> G e. Abel )
ablsimpg1gend.5
|- ( ph -> G e. SimpGrp )
ablsimpg1gend.6
|- ( ph -> A e. B )
ablsimpg1gend.7
|- ( ph -> -. A = .0. )
ablsimpg1gend.8
|- ( ph -> C e. B )
Assertion ablsimpg1gend
|- ( ph -> E. n e. ZZ C = ( n .x. A ) )

Proof

Step Hyp Ref Expression
1 ablsimpg1gend.1
 |-  B = ( Base ` G )
2 ablsimpg1gend.2
 |-  .0. = ( 0g ` G )
3 ablsimpg1gend.3
 |-  .x. = ( .g ` G )
4 ablsimpg1gend.4
 |-  ( ph -> G e. Abel )
5 ablsimpg1gend.5
 |-  ( ph -> G e. SimpGrp )
6 ablsimpg1gend.6
 |-  ( ph -> A e. B )
7 ablsimpg1gend.7
 |-  ( ph -> -. A = .0. )
8 ablsimpg1gend.8
 |-  ( ph -> C e. B )
9 eqid
 |-  ( n e. ZZ |-> ( n .x. A ) ) = ( n e. ZZ |-> ( n .x. A ) )
10 5 simpggrpd
 |-  ( ph -> G e. Grp )
11 1 3 9 10 6 cycsubgcld
 |-  ( ph -> ran ( n e. ZZ |-> ( n .x. A ) ) e. ( SubGrp ` G ) )
12 1 3 9 6 cycsubggend
 |-  ( ph -> A e. ran ( n e. ZZ |-> ( n .x. A ) ) )
13 1 2 4 5 11 12 7 ablsimpnosubgd
 |-  ( ph -> ran ( n e. ZZ |-> ( n .x. A ) ) = B )
14 8 13 eleqtrrd
 |-  ( ph -> C e. ran ( n e. ZZ |-> ( n .x. A ) ) )
15 9 14 elrnmpt2d
 |-  ( ph -> E. n e. ZZ C = ( n .x. A ) )