| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablsimpg1gend.1 |
|- B = ( Base ` G ) |
| 2 |
|
ablsimpg1gend.2 |
|- .0. = ( 0g ` G ) |
| 3 |
|
ablsimpg1gend.3 |
|- .x. = ( .g ` G ) |
| 4 |
|
ablsimpg1gend.4 |
|- ( ph -> G e. Abel ) |
| 5 |
|
ablsimpg1gend.5 |
|- ( ph -> G e. SimpGrp ) |
| 6 |
|
ablsimpg1gend.6 |
|- ( ph -> A e. B ) |
| 7 |
|
ablsimpg1gend.7 |
|- ( ph -> -. A = .0. ) |
| 8 |
|
ablsimpg1gend.8 |
|- ( ph -> C e. B ) |
| 9 |
|
eqid |
|- ( n e. ZZ |-> ( n .x. A ) ) = ( n e. ZZ |-> ( n .x. A ) ) |
| 10 |
5
|
simpggrpd |
|- ( ph -> G e. Grp ) |
| 11 |
1 3 9 10 6
|
cycsubgcld |
|- ( ph -> ran ( n e. ZZ |-> ( n .x. A ) ) e. ( SubGrp ` G ) ) |
| 12 |
1 3 9 6
|
cycsubggend |
|- ( ph -> A e. ran ( n e. ZZ |-> ( n .x. A ) ) ) |
| 13 |
1 2 4 5 11 12 7
|
ablsimpnosubgd |
|- ( ph -> ran ( n e. ZZ |-> ( n .x. A ) ) = B ) |
| 14 |
8 13
|
eleqtrrd |
|- ( ph -> C e. ran ( n e. ZZ |-> ( n .x. A ) ) ) |
| 15 |
9 14
|
elrnmpt2d |
|- ( ph -> E. n e. ZZ C = ( n .x. A ) ) |