| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablsimpg1gend.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | ablsimpg1gend.2 |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | ablsimpg1gend.3 |  |-  .x. = ( .g ` G ) | 
						
							| 4 |  | ablsimpg1gend.4 |  |-  ( ph -> G e. Abel ) | 
						
							| 5 |  | ablsimpg1gend.5 |  |-  ( ph -> G e. SimpGrp ) | 
						
							| 6 |  | ablsimpg1gend.6 |  |-  ( ph -> A e. B ) | 
						
							| 7 |  | ablsimpg1gend.7 |  |-  ( ph -> -. A = .0. ) | 
						
							| 8 |  | ablsimpg1gend.8 |  |-  ( ph -> C e. B ) | 
						
							| 9 |  | eqid |  |-  ( n e. ZZ |-> ( n .x. A ) ) = ( n e. ZZ |-> ( n .x. A ) ) | 
						
							| 10 | 5 | simpggrpd |  |-  ( ph -> G e. Grp ) | 
						
							| 11 | 1 3 9 10 6 | cycsubgcld |  |-  ( ph -> ran ( n e. ZZ |-> ( n .x. A ) ) e. ( SubGrp ` G ) ) | 
						
							| 12 | 1 3 9 6 | cycsubggend |  |-  ( ph -> A e. ran ( n e. ZZ |-> ( n .x. A ) ) ) | 
						
							| 13 | 1 2 4 5 11 12 7 | ablsimpnosubgd |  |-  ( ph -> ran ( n e. ZZ |-> ( n .x. A ) ) = B ) | 
						
							| 14 | 8 13 | eleqtrrd |  |-  ( ph -> C e. ran ( n e. ZZ |-> ( n .x. A ) ) ) | 
						
							| 15 | 9 14 | elrnmpt2d |  |-  ( ph -> E. n e. ZZ C = ( n .x. A ) ) |