Step |
Hyp |
Ref |
Expression |
1 |
|
ablsimpg1gend.1 |
|- B = ( Base ` G ) |
2 |
|
ablsimpg1gend.2 |
|- .0. = ( 0g ` G ) |
3 |
|
ablsimpg1gend.3 |
|- .x. = ( .g ` G ) |
4 |
|
ablsimpg1gend.4 |
|- ( ph -> G e. Abel ) |
5 |
|
ablsimpg1gend.5 |
|- ( ph -> G e. SimpGrp ) |
6 |
|
ablsimpg1gend.6 |
|- ( ph -> A e. B ) |
7 |
|
ablsimpg1gend.7 |
|- ( ph -> -. A = .0. ) |
8 |
|
ablsimpg1gend.8 |
|- ( ph -> C e. B ) |
9 |
|
eqid |
|- ( n e. ZZ |-> ( n .x. A ) ) = ( n e. ZZ |-> ( n .x. A ) ) |
10 |
5
|
simpggrpd |
|- ( ph -> G e. Grp ) |
11 |
1 3 9 10 6
|
cycsubgcld |
|- ( ph -> ran ( n e. ZZ |-> ( n .x. A ) ) e. ( SubGrp ` G ) ) |
12 |
1 3 9 6
|
cycsubggend |
|- ( ph -> A e. ran ( n e. ZZ |-> ( n .x. A ) ) ) |
13 |
1 2 4 5 11 12 7
|
ablsimpnosubgd |
|- ( ph -> ran ( n e. ZZ |-> ( n .x. A ) ) = B ) |
14 |
8 13
|
eleqtrrd |
|- ( ph -> C e. ran ( n e. ZZ |-> ( n .x. A ) ) ) |
15 |
9 14
|
elrnmpt2d |
|- ( ph -> E. n e. ZZ C = ( n .x. A ) ) |