| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablsimpgcygd.1 |
|- ( ph -> G e. Abel ) |
| 2 |
|
ablsimpgcygd.2 |
|- ( ph -> G e. SimpGrp ) |
| 3 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 4 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 5 |
3 4 2
|
simpgnideld |
|- ( ph -> E. x e. ( Base ` G ) -. x = ( 0g ` G ) ) |
| 6 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
| 7 |
2
|
simpggrpd |
|- ( ph -> G e. Grp ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) -> G e. Grp ) |
| 9 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) -> x e. ( Base ` G ) ) |
| 10 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) /\ y e. ( Base ` G ) ) -> G e. Abel ) |
| 11 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) /\ y e. ( Base ` G ) ) -> G e. SimpGrp ) |
| 12 |
|
simplrl |
|- ( ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) /\ y e. ( Base ` G ) ) -> x e. ( Base ` G ) ) |
| 13 |
|
simplrr |
|- ( ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) /\ y e. ( Base ` G ) ) -> -. x = ( 0g ` G ) ) |
| 14 |
|
simpr |
|- ( ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) /\ y e. ( Base ` G ) ) -> y e. ( Base ` G ) ) |
| 15 |
3 4 6 10 11 12 13 14
|
ablsimpg1gend |
|- ( ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) /\ y e. ( Base ` G ) ) -> E. z e. ZZ y = ( z ( .g ` G ) x ) ) |
| 16 |
3 6 8 9 15
|
iscygd |
|- ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) -> G e. CycGrp ) |
| 17 |
5 16
|
rexlimddv |
|- ( ph -> G e. CycGrp ) |