Metamath Proof Explorer


Theorem ablsimpgcygd

Description: An abelian simple group is cyclic. (Contributed by Rohan Ridenour, 3-Aug-2023) (Proof shortened by Rohan Ridenour, 31-Oct-2023)

Ref Expression
Hypotheses ablsimpgcygd.1
|- ( ph -> G e. Abel )
ablsimpgcygd.2
|- ( ph -> G e. SimpGrp )
Assertion ablsimpgcygd
|- ( ph -> G e. CycGrp )

Proof

Step Hyp Ref Expression
1 ablsimpgcygd.1
 |-  ( ph -> G e. Abel )
2 ablsimpgcygd.2
 |-  ( ph -> G e. SimpGrp )
3 eqid
 |-  ( Base ` G ) = ( Base ` G )
4 eqid
 |-  ( 0g ` G ) = ( 0g ` G )
5 3 4 2 simpgnideld
 |-  ( ph -> E. x e. ( Base ` G ) -. x = ( 0g ` G ) )
6 eqid
 |-  ( .g ` G ) = ( .g ` G )
7 2 simpggrpd
 |-  ( ph -> G e. Grp )
8 7 adantr
 |-  ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) -> G e. Grp )
9 simprl
 |-  ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) -> x e. ( Base ` G ) )
10 1 ad2antrr
 |-  ( ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) /\ y e. ( Base ` G ) ) -> G e. Abel )
11 2 ad2antrr
 |-  ( ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) /\ y e. ( Base ` G ) ) -> G e. SimpGrp )
12 simplrl
 |-  ( ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) /\ y e. ( Base ` G ) ) -> x e. ( Base ` G ) )
13 simplrr
 |-  ( ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) /\ y e. ( Base ` G ) ) -> -. x = ( 0g ` G ) )
14 simpr
 |-  ( ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) /\ y e. ( Base ` G ) ) -> y e. ( Base ` G ) )
15 3 4 6 10 11 12 13 14 ablsimpg1gend
 |-  ( ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) /\ y e. ( Base ` G ) ) -> E. z e. ZZ y = ( z ( .g ` G ) x ) )
16 3 6 8 9 15 iscygd
 |-  ( ( ph /\ ( x e. ( Base ` G ) /\ -. x = ( 0g ` G ) ) ) -> G e. CycGrp )
17 5 16 rexlimddv
 |-  ( ph -> G e. CycGrp )